Լուծել x, y-ի համար
x=-6
y=2
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x+5y=-8,4x+13y=2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+5y=-8
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-5y-8
Հանեք 5y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-5y-8\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{5}{3}y-\frac{8}{3}
Բազմապատկեք \frac{1}{3} անգամ -5y-8:
4\left(-\frac{5}{3}y-\frac{8}{3}\right)+13y=2
Փոխարինեք \frac{-5y-8}{3}-ը x-ով մյուս հավասարման մեջ՝ 4x+13y=2:
-\frac{20}{3}y-\frac{32}{3}+13y=2
Բազմապատկեք 4 անգամ \frac{-5y-8}{3}:
\frac{19}{3}y-\frac{32}{3}=2
Գումարեք -\frac{20y}{3} 13y-ին:
\frac{19}{3}y=\frac{38}{3}
Գումարեք \frac{32}{3} հավասարման երկու կողմին:
y=2
Բաժանեք հավասարման երկու կողմերը \frac{19}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{5}{3}\times 2-\frac{8}{3}
Փոխարինեք 2-ը y-ով x=-\frac{5}{3}y-\frac{8}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-10-8}{3}
Բազմապատկեք -\frac{5}{3} անգամ 2:
x=-6
Գումարեք -\frac{8}{3} -\frac{10}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=-6,y=2
Այժմ համակարգը լուծվել է:
3x+5y=-8,4x+13y=2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&5\\4&13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}3&5\\4&13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&5\\4&13\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{3\times 13-5\times 4}&-\frac{5}{3\times 13-5\times 4}\\-\frac{4}{3\times 13-5\times 4}&\frac{3}{3\times 13-5\times 4}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&-\frac{5}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\left(-8\right)-\frac{5}{19}\times 2\\-\frac{4}{19}\left(-8\right)+\frac{3}{19}\times 2\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=-6,y=2
Արտահանեք մատրիցայի x և y տարրերը:
3x+5y=-8,4x+13y=2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4\times 3x+4\times 5y=4\left(-8\right),3\times 4x+3\times 13y=3\times 2
3x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
12x+20y=-32,12x+39y=6
Պարզեցնել:
12x-12x+20y-39y=-32-6
Հանեք 12x+39y=6 12x+20y=-32-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
20y-39y=-32-6
Գումարեք 12x -12x-ին: 12x-ը և -12x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-19y=-32-6
Գումարեք 20y -39y-ին:
-19y=-38
Գումարեք -32 -6-ին:
y=2
Բաժանեք երկու կողմերը -19-ի:
4x+13\times 2=2
Փոխարինեք 2-ը y-ով 4x+13y=2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
4x+26=2
Բազմապատկեք 13 անգամ 2:
4x=-24
Հանեք 26 հավասարման երկու կողմից:
x=-6
Բաժանեք երկու կողմերը 4-ի:
x=-6,y=2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}