Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x+y=6,2x-y+2=0
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+y=6
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-y+6
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-y+6\right)
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{1}{2}y+3
Բազմապատկեք \frac{1}{2} անգամ -y+6:
2\left(-\frac{1}{2}y+3\right)-y+2=0
Փոխարինեք -\frac{y}{2}+3-ը x-ով մյուս հավասարման մեջ՝ 2x-y+2=0:
-y+6-y+2=0
Բազմապատկեք 2 անգամ -\frac{y}{2}+3:
-2y+6+2=0
Գումարեք -y -y-ին:
-2y+8=0
Գումարեք 6 2-ին:
-2y=-8
Հանեք 8 հավասարման երկու կողմից:
y=4
Բաժանեք երկու կողմերը -2-ի:
x=-\frac{1}{2}\times 4+3
Փոխարինեք 4-ը y-ով x=-\frac{1}{2}y+3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-2+3
Բազմապատկեք -\frac{1}{2} անգամ 4:
x=1
Գումարեք 3 -2-ին:
x=1,y=4
Այժմ համակարգը լուծվել է:
2x+y=6,2x-y+2=0
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&1\\2&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2}&-\frac{1}{2\left(-1\right)-2}\\-\frac{2}{2\left(-1\right)-2}&\frac{2}{2\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6+\frac{1}{4}\left(-2\right)\\\frac{1}{2}\times 6-\frac{1}{2}\left(-2\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=4
Արտահանեք մատրիցայի x և y տարրերը:
2x+y=6,2x-y+2=0
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x-2x+y+y-2=6
Հանեք 2x-y+2=0 2x+y=6-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
y+y-2=6
Գումարեք 2x -2x-ին: 2x-ը և -2x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
2y-2=6
Գումարեք y y-ին:
2y=8
Գումարեք 2 հավասարման երկու կողմին:
y=4
Բաժանեք երկու կողմերը 2-ի:
2x-4+2=0
Փոխարինեք 4-ը y-ով 2x-y+2=0-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x-2=0
Գումարեք -4 2-ին:
2x=2
Գումարեք 2 հավասարման երկու կողմին:
x=1
Բաժանեք երկու կողմերը 2-ի:
x=1,y=4
Այժմ համակարգը լուծվել է: