Լուծել x, y-ի համար
x = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
y = \frac{20}{7} = 2\frac{6}{7} \approx 2.857142857
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x+y=12,3x-2y=8
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+y=12
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-y+12
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-y+12\right)
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{1}{2}y+6
Բազմապատկեք \frac{1}{2} անգամ -y+12:
3\left(-\frac{1}{2}y+6\right)-2y=8
Փոխարինեք -\frac{y}{2}+6-ը x-ով մյուս հավասարման մեջ՝ 3x-2y=8:
-\frac{3}{2}y+18-2y=8
Բազմապատկեք 3 անգամ -\frac{y}{2}+6:
-\frac{7}{2}y+18=8
Գումարեք -\frac{3y}{2} -2y-ին:
-\frac{7}{2}y=-10
Հանեք 18 հավասարման երկու կողմից:
y=\frac{20}{7}
Բաժանեք հավասարման երկու կողմերը -\frac{7}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{1}{2}\times \frac{20}{7}+6
Փոխարինեք \frac{20}{7}-ը y-ով x=-\frac{1}{2}y+6-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{10}{7}+6
Բազմապատկեք -\frac{1}{2} անգամ \frac{20}{7}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{32}{7}
Գումարեք 6 -\frac{10}{7}-ին:
x=\frac{32}{7},y=\frac{20}{7}
Այժմ համակարգը լուծվել է:
2x+y=12,3x-2y=8
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&1\\3&-2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{1}{2\left(-2\right)-3}\\-\frac{3}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}12\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}12\\8\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 12+\frac{1}{7}\times 8\\\frac{3}{7}\times 12-\frac{2}{7}\times 8\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{32}{7}\\\frac{20}{7}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{32}{7},y=\frac{20}{7}
Արտահանեք մատրիցայի x և y տարրերը:
2x+y=12,3x-2y=8
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3\times 2x+3y=3\times 12,2\times 3x+2\left(-2\right)y=2\times 8
2x-ը և 3x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
6x+3y=36,6x-4y=16
Պարզեցնել:
6x-6x+3y+4y=36-16
Հանեք 6x-4y=16 6x+3y=36-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
3y+4y=36-16
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
7y=36-16
Գումարեք 3y 4y-ին:
7y=20
Գումարեք 36 -16-ին:
y=\frac{20}{7}
Բաժանեք երկու կողմերը 7-ի:
3x-2\times \frac{20}{7}=8
Փոխարինեք \frac{20}{7}-ը y-ով 3x-2y=8-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
3x-\frac{40}{7}=8
Բազմապատկեք -2 անգամ \frac{20}{7}:
3x=\frac{96}{7}
Գումարեք \frac{40}{7} հավասարման երկու կողմին:
x=\frac{32}{7}
Բաժանեք երկու կողմերը 3-ի:
x=\frac{32}{7},y=\frac{20}{7}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}