Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x+3y=8,3x+3y=9
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+3y=8
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-3y+8
Հանեք 3y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-3y+8\right)
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{3}{2}y+4
Բազմապատկեք \frac{1}{2} անգամ -3y+8:
3\left(-\frac{3}{2}y+4\right)+3y=9
Փոխարինեք -\frac{3y}{2}+4-ը x-ով մյուս հավասարման մեջ՝ 3x+3y=9:
-\frac{9}{2}y+12+3y=9
Բազմապատկեք 3 անգամ -\frac{3y}{2}+4:
-\frac{3}{2}y+12=9
Գումարեք -\frac{9y}{2} 3y-ին:
-\frac{3}{2}y=-3
Հանեք 12 հավասարման երկու կողմից:
y=2
Բաժանեք հավասարման երկու կողմերը -\frac{3}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{3}{2}\times 2+4
Փոխարինեք 2-ը y-ով x=-\frac{3}{2}y+4-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-3+4
Բազմապատկեք -\frac{3}{2} անգամ 2:
x=1
Գումարեք 4 -3-ին:
x=1,y=2
Այժմ համակարգը լուծվել է:
2x+3y=8,3x+3y=9
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&3\\3&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 3}&-\frac{3}{2\times 3-3\times 3}\\-\frac{3}{2\times 3-3\times 3}&\frac{2}{2\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8+9\\8-\frac{2}{3}\times 9\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=2
Արտահանեք մատրիցայի x և y տարրերը:
2x+3y=8,3x+3y=9
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x-3x+3y-3y=8-9
Հանեք 3x+3y=9 2x+3y=8-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2x-3x=8-9
Գումարեք 3y -3y-ին: 3y-ը և -3y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-x=8-9
Գումարեք 2x -3x-ին:
-x=-1
Գումարեք 8 -9-ին:
x=1
Բաժանեք երկու կողմերը -1-ի:
3+3y=9
Փոխարինեք 1-ը x-ով 3x+3y=9-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
3y=6
Հանեք 3 հավասարման երկու կողմից:
y=2
Բաժանեք երկու կողմերը 3-ի:
x=1,y=2
Այժմ համակարգը լուծվել է: