Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x+2y=28,x+3y=24
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+2y=28
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-2y+28
Հանեք 2y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-2y+28\right)
Բաժանեք երկու կողմերը 2-ի:
x=-y+14
Բազմապատկեք \frac{1}{2} անգամ -2y+28:
-y+14+3y=24
Փոխարինեք -y+14-ը x-ով մյուս հավասարման մեջ՝ x+3y=24:
2y+14=24
Գումարեք -y 3y-ին:
2y=10
Հանեք 14 հավասարման երկու կողմից:
y=5
Բաժանեք երկու կողմերը 2-ի:
x=-5+14
Փոխարինեք 5-ը y-ով x=-y+14-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=9
Գումարեք 14 -5-ին:
x=9,y=5
Այժմ համակարգը լուծվել է:
2x+2y=28,x+3y=24
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&2\\1&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2}&-\frac{2}{2\times 3-2}\\-\frac{1}{2\times 3-2}&\frac{2}{2\times 3-2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 28-\frac{1}{2}\times 24\\-\frac{1}{4}\times 28+\frac{1}{2}\times 24\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Կատարել թվաբանություն:
x=9,y=5
Արտահանեք մատրիցայի x և y տարրերը:
2x+2y=28,x+3y=24
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x+2y=28,2x+2\times 3y=2\times 24
2x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
2x+2y=28,2x+6y=48
Պարզեցնել:
2x-2x+2y-6y=28-48
Հանեք 2x+6y=48 2x+2y=28-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y-6y=28-48
Գումարեք 2x -2x-ին: 2x-ը և -2x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-4y=28-48
Գումարեք 2y -6y-ին:
-4y=-20
Գումարեք 28 -48-ին:
y=5
Բաժանեք երկու կողմերը -4-ի:
x+3\times 5=24
Փոխարինեք 5-ը y-ով x+3y=24-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+15=24
Բազմապատկեք 3 անգամ 5:
x=9
Հանեք 15 հավասարման երկու կողմից:
x=9,y=5
Այժմ համակարգը լուծվել է: