Լուծել x, y-ի համար
x=4
y=1
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
-5x+13y=-7,5x+4y=24
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
-5x+13y=-7
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
-5x=-13y-7
Հանեք 13y հավասարման երկու կողմից:
x=-\frac{1}{5}\left(-13y-7\right)
Բաժանեք երկու կողմերը -5-ի:
x=\frac{13}{5}y+\frac{7}{5}
Բազմապատկեք -\frac{1}{5} անգամ -13y-7:
5\left(\frac{13}{5}y+\frac{7}{5}\right)+4y=24
Փոխարինեք \frac{13y+7}{5}-ը x-ով մյուս հավասարման մեջ՝ 5x+4y=24:
13y+7+4y=24
Բազմապատկեք 5 անգամ \frac{13y+7}{5}:
17y+7=24
Գումարեք 13y 4y-ին:
17y=17
Հանեք 7 հավասարման երկու կողմից:
y=1
Բաժանեք երկու կողմերը 17-ի:
x=\frac{13+7}{5}
Փոխարինեք 1-ը y-ով x=\frac{13}{5}y+\frac{7}{5}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=4
Գումարեք \frac{7}{5} \frac{13}{5}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=4,y=1
Այժմ համակարգը լուծվել է:
-5x+13y=-7,5x+4y=24
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\24\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}-5&13\\5&4\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-5\times 4-13\times 5}&-\frac{13}{-5\times 4-13\times 5}\\-\frac{5}{-5\times 4-13\times 5}&-\frac{5}{-5\times 4-13\times 5}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}&\frac{13}{85}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}\left(-7\right)+\frac{13}{85}\times 24\\\frac{1}{17}\left(-7\right)+\frac{1}{17}\times 24\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Կատարել թվաբանություն:
x=4,y=1
Արտահանեք մատրիցայի x և y տարրերը:
-5x+13y=-7,5x+4y=24
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5\left(-5\right)x+5\times 13y=5\left(-7\right),-5\times 5x-5\times 4y=-5\times 24
-5x-ը և 5x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 5-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ -5-ով:
-25x+65y=-35,-25x-20y=-120
Պարզեցնել:
-25x+25x+65y+20y=-35+120
Հանեք -25x-20y=-120 -25x+65y=-35-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
65y+20y=-35+120
Գումարեք -25x 25x-ին: -25x-ը և 25x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
85y=-35+120
Գումարեք 65y 20y-ին:
85y=85
Գումարեք -35 120-ին:
y=1
Բաժանեք երկու կողմերը 85-ի:
5x+4=24
Փոխարինեք 1-ը y-ով 5x+4y=24-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
5x=20
Հանեք 4 հավասարման երկու կողմից:
x=4
Բաժանեք երկու կողմերը 5-ի:
x=4,y=1
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}