Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

-5x+10y=15,-5x+2y=-1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
-5x+10y=15
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
-5x=-10y+15
Հանեք 10y հավասարման երկու կողմից:
x=-\frac{1}{5}\left(-10y+15\right)
Բաժանեք երկու կողմերը -5-ի:
x=2y-3
Բազմապատկեք -\frac{1}{5} անգամ -10y+15:
-5\left(2y-3\right)+2y=-1
Փոխարինեք 2y-3-ը x-ով մյուս հավասարման մեջ՝ -5x+2y=-1:
-10y+15+2y=-1
Բազմապատկեք -5 անգամ 2y-3:
-8y+15=-1
Գումարեք -10y 2y-ին:
-8y=-16
Հանեք 15 հավասարման երկու կողմից:
y=2
Բաժանեք երկու կողմերը -8-ի:
x=2\times 2-3
Փոխարինեք 2-ը y-ով x=2y-3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=4-3
Բազմապատկեք 2 անգամ 2:
x=1
Գումարեք -3 4-ին:
x=1,y=2
Այժմ համակարգը լուծվել է:
-5x+10y=15,-5x+2y=-1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=2
Արտահանեք մատրիցայի x և y տարրերը:
-5x+10y=15,-5x+2y=-1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
-5x+5x+10y-2y=15+1
Հանեք -5x+2y=-1 -5x+10y=15-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
10y-2y=15+1
Գումարեք -5x 5x-ին: -5x-ը և 5x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
8y=15+1
Գումարեք 10y -2y-ին:
8y=16
Գումարեք 15 1-ին:
y=2
Բաժանեք երկու կողմերը 8-ի:
-5x+2\times 2=-1
Փոխարինեք 2-ը y-ով -5x+2y=-1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
-5x+4=-1
Բազմապատկեք 2 անգամ 2:
-5x=-5
Հանեք 4 հավասարման երկու կողմից:
x=1
Բաժանեք երկու կողմերը -5-ի:
x=1,y=2
Այժմ համակարգը լուծվել է: