Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

-2x-6y=-26,5x+2y=13
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
-2x-6y=-26
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
-2x=6y-26
Գումարեք 6y հավասարման երկու կողմին:
x=-\frac{1}{2}\left(6y-26\right)
Բաժանեք երկու կողմերը -2-ի:
x=-3y+13
Բազմապատկեք -\frac{1}{2} անգամ 6y-26:
5\left(-3y+13\right)+2y=13
Փոխարինեք -3y+13-ը x-ով մյուս հավասարման մեջ՝ 5x+2y=13:
-15y+65+2y=13
Բազմապատկեք 5 անգամ -3y+13:
-13y+65=13
Գումարեք -15y 2y-ին:
-13y=-52
Հանեք 65 հավասարման երկու կողմից:
y=4
Բաժանեք երկու կողմերը -13-ի:
x=-3\times 4+13
Փոխարինեք 4-ը y-ով x=-3y+13-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-12+13
Բազմապատկեք -3 անգամ 4:
x=1
Գումարեք 13 -12-ին:
x=1,y=4
Այժմ համակարգը լուծվել է:
-2x-6y=-26,5x+2y=13
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\13\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2\times 2-\left(-6\times 5\right)}&-\frac{-6}{-2\times 2-\left(-6\times 5\right)}\\-\frac{5}{-2\times 2-\left(-6\times 5\right)}&-\frac{2}{-2\times 2-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\-\frac{5}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-26\right)+\frac{3}{13}\times 13\\-\frac{5}{26}\left(-26\right)-\frac{1}{13}\times 13\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=4
Արտահանեք մատրիցայի x և y տարրերը:
-2x-6y=-26,5x+2y=13
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5\left(-2\right)x+5\left(-6\right)y=5\left(-26\right),-2\times 5x-2\times 2y=-2\times 13
-2x-ը և 5x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 5-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ -2-ով:
-10x-30y=-130,-10x-4y=-26
Պարզեցնել:
-10x+10x-30y+4y=-130+26
Հանեք -10x-4y=-26 -10x-30y=-130-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-30y+4y=-130+26
Գումարեք -10x 10x-ին: -10x-ը և 10x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-26y=-130+26
Գումարեք -30y 4y-ին:
-26y=-104
Գումարեք -130 26-ին:
y=4
Բաժանեք երկու կողմերը -26-ի:
5x+2\times 4=13
Փոխարինեք 4-ը y-ով 5x+2y=13-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
5x+8=13
Բազմապատկեք 2 անգամ 4:
5x=5
Հանեք 8 հավասարման երկու կողմից:
x=1
Բաժանեք երկու կողմերը 5-ի:
x=1,y=4
Այժմ համակարգը լուծվել է: