Լուծել x, y-ի համար
x=5
y=5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
-12x+10y=-10,6x-7y=-5
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
-12x+10y=-10
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
-12x=-10y-10
Հանեք 10y հավասարման երկու կողմից:
x=-\frac{1}{12}\left(-10y-10\right)
Բաժանեք երկու կողմերը -12-ի:
x=\frac{5}{6}y+\frac{5}{6}
Բազմապատկեք -\frac{1}{12} անգամ -10y-10:
6\left(\frac{5}{6}y+\frac{5}{6}\right)-7y=-5
Փոխարինեք \frac{5+5y}{6}-ը x-ով մյուս հավասարման մեջ՝ 6x-7y=-5:
5y+5-7y=-5
Բազմապատկեք 6 անգամ \frac{5+5y}{6}:
-2y+5=-5
Գումարեք 5y -7y-ին:
-2y=-10
Հանեք 5 հավասարման երկու կողմից:
y=5
Բաժանեք երկու կողմերը -2-ի:
x=\frac{5}{6}\times 5+\frac{5}{6}
Փոխարինեք 5-ը y-ով x=\frac{5}{6}y+\frac{5}{6}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{25+5}{6}
Բազմապատկեք \frac{5}{6} անգամ 5:
x=5
Գումարեք \frac{5}{6} \frac{25}{6}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=5,y=5
Այժմ համակարգը լուծվել է:
-12x+10y=-10,6x-7y=-5
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-5\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-12\left(-7\right)-10\times 6}&-\frac{10}{-12\left(-7\right)-10\times 6}\\-\frac{6}{-12\left(-7\right)-10\times 6}&-\frac{12}{-12\left(-7\right)-10\times 6}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}&-\frac{5}{12}\\-\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\left(-10\right)-\frac{5}{12}\left(-5\right)\\-\frac{1}{4}\left(-10\right)-\frac{1}{2}\left(-5\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Կատարել թվաբանություն:
x=5,y=5
Արտահանեք մատրիցայի x և y տարրերը:
-12x+10y=-10,6x-7y=-5
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
6\left(-12\right)x+6\times 10y=6\left(-10\right),-12\times 6x-12\left(-7\right)y=-12\left(-5\right)
-12x-ը և 6x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 6-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ -12-ով:
-72x+60y=-60,-72x+84y=60
Պարզեցնել:
-72x+72x+60y-84y=-60-60
Հանեք -72x+84y=60 -72x+60y=-60-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
60y-84y=-60-60
Գումարեք -72x 72x-ին: -72x-ը և 72x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-24y=-60-60
Գումարեք 60y -84y-ին:
-24y=-120
Գումարեք -60 -60-ին:
y=5
Բաժանեք երկու կողմերը -24-ի:
6x-7\times 5=-5
Փոխարինեք 5-ը y-ով 6x-7y=-5-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
6x-35=-5
Բազմապատկեք -7 անգամ 5:
6x=30
Գումարեք 35 հավասարման երկու կողմին:
x=5
Բաժանեք երկու կողմերը 6-ի:
x=5,y=5
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}