Լուծել x, y-ի համար
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x-y=-2
Դիտարկել երկրորդ հավասարումը: Հանեք y երկու կողմերից:
5x-2y=4,x-y=-2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
5x-2y=4
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
5x=2y+4
Գումարեք 2y հավասարման երկու կողմին:
x=\frac{1}{5}\left(2y+4\right)
Բաժանեք երկու կողմերը 5-ի:
x=\frac{2}{5}y+\frac{4}{5}
Բազմապատկեք \frac{1}{5} անգամ 4+2y:
\frac{2}{5}y+\frac{4}{5}-y=-2
Փոխարինեք \frac{4+2y}{5}-ը x-ով մյուս հավասարման մեջ՝ x-y=-2:
-\frac{3}{5}y+\frac{4}{5}=-2
Գումարեք \frac{2y}{5} -y-ին:
-\frac{3}{5}y=-\frac{14}{5}
Հանեք \frac{4}{5} հավասարման երկու կողմից:
y=\frac{14}{3}
Բաժանեք հավասարման երկու կողմերը -\frac{3}{5}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{2}{5}\times \frac{14}{3}+\frac{4}{5}
Փոխարինեք \frac{14}{3}-ը y-ով x=\frac{2}{5}y+\frac{4}{5}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{28}{15}+\frac{4}{5}
Բազմապատկեք \frac{2}{5} անգամ \frac{14}{3}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{8}{3}
Գումարեք \frac{4}{5} \frac{28}{15}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{8}{3},y=\frac{14}{3}
Այժմ համակարգը լուծվել է:
x-y=-2
Դիտարկել երկրորդ հավասարումը: Հանեք y երկու կողմերից:
5x-2y=4,x-y=-2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-2}{5\left(-1\right)-\left(-2\right)}\\-\frac{1}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4-\frac{2}{3}\left(-2\right)\\\frac{1}{3}\times 4-\frac{5}{3}\left(-2\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\\frac{14}{3}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{8}{3},y=\frac{14}{3}
Արտահանեք մատրիցայի x և y տարրերը:
x-y=-2
Դիտարկել երկրորդ հավասարումը: Հանեք y երկու կողմերից:
5x-2y=4,x-y=-2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5x-2y=4,5x+5\left(-1\right)y=5\left(-2\right)
5x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 5-ով:
5x-2y=4,5x-5y=-10
Պարզեցնել:
5x-5x-2y+5y=4+10
Հանեք 5x-5y=-10 5x-2y=4-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-2y+5y=4+10
Գումարեք 5x -5x-ին: 5x-ը և -5x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
3y=4+10
Գումարեք -2y 5y-ին:
3y=14
Գումարեք 4 10-ին:
y=\frac{14}{3}
Բաժանեք երկու կողմերը 3-ի:
x-\frac{14}{3}=-2
Փոխարինեք \frac{14}{3}-ը y-ով x-y=-2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{8}{3}
Գումարեք \frac{14}{3} հավասարման երկու կողմին:
x=\frac{8}{3},y=\frac{14}{3}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}