Լուծել x, y-ի համար
x = \frac{27}{23} = 1\frac{4}{23} \approx 1.173913043
y=\frac{6}{23}\approx 0.260869565
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
4x+5y=6,x+7y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
4x+5y=6
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
4x=-5y+6
Հանեք 5y հավասարման երկու կողմից:
x=\frac{1}{4}\left(-5y+6\right)
Բաժանեք երկու կողմերը 4-ի:
x=-\frac{5}{4}y+\frac{3}{2}
Բազմապատկեք \frac{1}{4} անգամ -5y+6:
-\frac{5}{4}y+\frac{3}{2}+7y=3
Փոխարինեք -\frac{5y}{4}+\frac{3}{2}-ը x-ով մյուս հավասարման մեջ՝ x+7y=3:
\frac{23}{4}y+\frac{3}{2}=3
Գումարեք -\frac{5y}{4} 7y-ին:
\frac{23}{4}y=\frac{3}{2}
Հանեք \frac{3}{2} հավասարման երկու կողմից:
y=\frac{6}{23}
Բաժանեք հավասարման երկու կողմերը \frac{23}{4}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{5}{4}\times \frac{6}{23}+\frac{3}{2}
Փոխարինեք \frac{6}{23}-ը y-ով x=-\frac{5}{4}y+\frac{3}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{15}{46}+\frac{3}{2}
Բազմապատկեք -\frac{5}{4} անգամ \frac{6}{23}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{27}{23}
Գումարեք \frac{3}{2} -\frac{15}{46}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{27}{23},y=\frac{6}{23}
Այժմ համակարգը լուծվել է:
4x+5y=6,x+7y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}4&5\\1&7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4\times 7-5}&-\frac{5}{4\times 7-5}\\-\frac{1}{4\times 7-5}&\frac{4}{4\times 7-5}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}&-\frac{5}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}\times 6-\frac{5}{23}\times 3\\-\frac{1}{23}\times 6+\frac{4}{23}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{23}\\\frac{6}{23}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{27}{23},y=\frac{6}{23}
Արտահանեք մատրիցայի x և y տարրերը:
4x+5y=6,x+7y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4x+5y=6,4x+4\times 7y=4\times 3
4x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 4-ով:
4x+5y=6,4x+28y=12
Պարզեցնել:
4x-4x+5y-28y=6-12
Հանեք 4x+28y=12 4x+5y=6-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
5y-28y=6-12
Գումարեք 4x -4x-ին: 4x-ը և -4x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-23y=6-12
Գումարեք 5y -28y-ին:
-23y=-6
Գումարեք 6 -12-ին:
y=\frac{6}{23}
Բաժանեք երկու կողմերը -23-ի:
x+7\times \frac{6}{23}=3
Փոխարինեք \frac{6}{23}-ը y-ով x+7y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+\frac{42}{23}=3
Բազմապատկեք 7 անգամ \frac{6}{23}:
x=\frac{27}{23}
Հանեք \frac{42}{23} հավասարման երկու կողմից:
x=\frac{27}{23},y=\frac{6}{23}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}