Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+y=14,2x+4y=38
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+y=14
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-y+14
Հանեք y հավասարման երկու կողմից:
2\left(-y+14\right)+4y=38
Փոխարինեք -y+14-ը x-ով մյուս հավասարման մեջ՝ 2x+4y=38:
-2y+28+4y=38
Բազմապատկեք 2 անգամ -y+14:
2y+28=38
Գումարեք -2y 4y-ին:
2y=10
Հանեք 28 հավասարման երկու կողմից:
y=5
Բաժանեք երկու կողմերը 2-ի:
x=-5+14
Փոխարինեք 5-ը y-ով x=-y+14-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=9
Գումարեք 14 -5-ին:
x=9,y=5
Այժմ համակարգը լուծվել է:
x+y=14,2x+4y=38
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\38\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}14\\38\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\2&4\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}14\\38\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}14\\38\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}14\\38\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}14\\38\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 14-\frac{1}{2}\times 38\\-14+\frac{1}{2}\times 38\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Կատարել թվաբանություն:
x=9,y=5
Արտահանեք մատրիցայի x և y տարրերը:
x+y=14,2x+4y=38
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x+2y=2\times 14,2x+4y=38
x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
2x+2y=28,2x+4y=38
Պարզեցնել:
2x-2x+2y-4y=28-38
Հանեք 2x+4y=38 2x+2y=28-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y-4y=28-38
Գումարեք 2x -2x-ին: 2x-ը և -2x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-2y=28-38
Գումարեք 2y -4y-ին:
-2y=-10
Գումարեք 28 -38-ին:
y=5
Բաժանեք երկու կողմերը -2-ի:
2x+4\times 5=38
Փոխարինեք 5-ը y-ով 2x+4y=38-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x+20=38
Բազմապատկեք 4 անգամ 5:
2x=18
Հանեք 20 հավասարման երկու կողմից:
x=9
Բաժանեք երկու կողմերը 2-ի:
x=9,y=5
Այժմ համակարգը լուծվել է: