\left\{ \begin{array} { l } { x + 4 y = 7 } \\ { 2 x - 7 y = - 31 } \end{array} \right.
Լուծել x, y-ի համար
x=-5
y=3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x+4y=7,2x-7y=-31
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+4y=7
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-4y+7
Հանեք 4y հավասարման երկու կողմից:
2\left(-4y+7\right)-7y=-31
Փոխարինեք -4y+7-ը x-ով մյուս հավասարման մեջ՝ 2x-7y=-31:
-8y+14-7y=-31
Բազմապատկեք 2 անգամ -4y+7:
-15y+14=-31
Գումարեք -8y -7y-ին:
-15y=-45
Հանեք 14 հավասարման երկու կողմից:
y=3
Բաժանեք երկու կողմերը -15-ի:
x=-4\times 3+7
Փոխարինեք 3-ը y-ով x=-4y+7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-12+7
Բազմապատկեք -4 անգամ 3:
x=-5
Գումարեք 7 -12-ին:
x=-5,y=3
Այժմ համակարգը լուծվել է:
x+4y=7,2x-7y=-31
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-31\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&4\\2&-7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-4\times 2}&-\frac{4}{-7-4\times 2}\\-\frac{2}{-7-4\times 2}&\frac{1}{-7-4\times 2}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}&\frac{4}{15}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}\times 7+\frac{4}{15}\left(-31\right)\\\frac{2}{15}\times 7-\frac{1}{15}\left(-31\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\3\end{matrix}\right)
Կատարել թվաբանություն:
x=-5,y=3
Արտահանեք մատրիցայի x և y տարրերը:
x+4y=7,2x-7y=-31
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x+2\times 4y=2\times 7,2x-7y=-31
x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
2x+8y=14,2x-7y=-31
Պարզեցնել:
2x-2x+8y+7y=14+31
Հանեք 2x-7y=-31 2x+8y=14-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
8y+7y=14+31
Գումարեք 2x -2x-ին: 2x-ը և -2x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
15y=14+31
Գումարեք 8y 7y-ին:
15y=45
Գումարեք 14 31-ին:
y=3
Բաժանեք երկու կողմերը 15-ի:
2x-7\times 3=-31
Փոխարինեք 3-ը y-ով 2x-7y=-31-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x-21=-31
Բազմապատկեք -7 անգամ 3:
2x=-10
Գումարեք 21 հավասարման երկու կողմին:
x=-5
Բաժանեք երկու կողմերը 2-ի:
x=-5,y=3
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}