Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+2y=1,x+y=2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+2y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-2y+1
Հանեք 2y հավասարման երկու կողմից:
-2y+1+y=2
Փոխարինեք -2y+1-ը x-ով մյուս հավասարման մեջ՝ x+y=2:
-y+1=2
Գումարեք -2y y-ին:
-y=1
Հանեք 1 հավասարման երկու կողմից:
y=-1
Բաժանեք երկու կողմերը -1-ի:
x=-2\left(-1\right)+1
Փոխարինեք -1-ը y-ով x=-2y+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=2+1
Բազմապատկեք -2 անգամ -1:
x=3
Գումարեք 1 2-ին:
x=3,y=-1
Այժմ համակարգը լուծվել է:
x+2y=1,x+y=2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&2\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{2}{1-2}\\-\frac{1}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+2\times 2\\1-2\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=-1
Արտահանեք մատրիցայի x և y տարրերը:
x+2y=1,x+y=2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x+2y-y=1-2
Հանեք x+y=2 x+2y=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y-y=1-2
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
y=1-2
Գումարեք 2y -y-ին:
y=-1
Գումարեք 1 -2-ին:
x-1=2
Փոխարինեք -1-ը y-ով x+y=2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3
Գումարեք 1 հավասարման երկու կողմին:
x=3,y=-1
Այժմ համակարգը լուծվել է: