\left\{ \begin{array} { l } { a + b = 3 } \\ { a - b = 7 } \end{array} \right.
Լուծել a, b-ի համար
a=5
b=-2
Քուիզ
Simultaneous Equation
\left\{ \begin{array} { l } { a + b = 3 } \\ { a - b = 7 } \end{array} \right.
Կիսվեք
Պատճենահանված է clipboard
a+b=3,a-b=7
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
a+b=3
Ընտրեք հավասարումներից մեկը և լուծեք այն a-ի համար՝ առանձնացնելով a-ը հավասարության նշանի ձախ կողմում:
a=-b+3
Հանեք b հավասարման երկու կողմից:
-b+3-b=7
Փոխարինեք -b+3-ը a-ով մյուս հավասարման մեջ՝ a-b=7:
-2b+3=7
Գումարեք -b -b-ին:
-2b=4
Հանեք 3 հավասարման երկու կողմից:
b=-2
Բաժանեք երկու կողմերը -2-ի:
a=-\left(-2\right)+3
Փոխարինեք -2-ը b-ով a=-b+3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=2+3
Բազմապատկեք -1 անգամ -2:
a=5
Գումարեք 3 2-ին:
a=5,b=-2
Այժմ համակարգը լուծվել է:
a+b=3,a-b=7
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\1&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 7\\\frac{1}{2}\times 3-\frac{1}{2}\times 7\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Կատարել թվաբանություն:
a=5,b=-2
Արտահանեք մատրիցայի a և b տարրերը:
a+b=3,a-b=7
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
a-a+b+b=3-7
Հանեք a-b=7 a+b=3-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
b+b=3-7
Գումարեք a -a-ին: a-ը և -a-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
2b=3-7
Գումարեք b b-ին:
2b=-4
Գումարեք 3 -7-ին:
b=-2
Բաժանեք երկու կողմերը 2-ի:
a-\left(-2\right)=7
Փոխարինեք -2-ը b-ով a-b=7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a+2=7
Բազմապատկեք -1 անգամ -2:
a=5
Հանեք 2 հավասարման երկու կողմից:
a=5,b=-2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}