\left\{ \begin{array} { l } { 6 x - 4 y = 30 } \\ { 2 x + 6 y = - 34 } \end{array} \right.
Լուծել x, y-ի համար
x=1
y=-6
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
6x-4y=30,2x+6y=-34
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
6x-4y=30
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
6x=4y+30
Գումարեք 4y հավասարման երկու կողմին:
x=\frac{1}{6}\left(4y+30\right)
Բաժանեք երկու կողմերը 6-ի:
x=\frac{2}{3}y+5
Բազմապատկեք \frac{1}{6} անգամ 4y+30:
2\left(\frac{2}{3}y+5\right)+6y=-34
Փոխարինեք \frac{2y}{3}+5-ը x-ով մյուս հավասարման մեջ՝ 2x+6y=-34:
\frac{4}{3}y+10+6y=-34
Բազմապատկեք 2 անգամ \frac{2y}{3}+5:
\frac{22}{3}y+10=-34
Գումարեք \frac{4y}{3} 6y-ին:
\frac{22}{3}y=-44
Հանեք 10 հավասարման երկու կողմից:
y=-6
Բաժանեք հավասարման երկու կողմերը \frac{22}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{2}{3}\left(-6\right)+5
Փոխարինեք -6-ը y-ով x=\frac{2}{3}y+5-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-4+5
Բազմապատկեք \frac{2}{3} անգամ -6:
x=1
Գումարեք 5 -4-ին:
x=1,y=-6
Այժմ համակարգը լուծվել է:
6x-4y=30,2x+6y=-34
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-34\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}6&-4\\2&6\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-\left(-4\times 2\right)}&-\frac{-4}{6\times 6-\left(-4\times 2\right)}\\-\frac{2}{6\times 6-\left(-4\times 2\right)}&\frac{6}{6\times 6-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{1}{22}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 30+\frac{1}{11}\left(-34\right)\\-\frac{1}{22}\times 30+\frac{3}{22}\left(-34\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=-6
Արտահանեք մատրիցայի x և y տարրերը:
6x-4y=30,2x+6y=-34
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 6x+2\left(-4\right)y=2\times 30,6\times 2x+6\times 6y=6\left(-34\right)
6x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 6-ով:
12x-8y=60,12x+36y=-204
Պարզեցնել:
12x-12x-8y-36y=60+204
Հանեք 12x+36y=-204 12x-8y=60-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-8y-36y=60+204
Գումարեք 12x -12x-ին: 12x-ը և -12x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-44y=60+204
Գումարեք -8y -36y-ին:
-44y=264
Գումարեք 60 204-ին:
y=-6
Բաժանեք երկու կողմերը -44-ի:
2x+6\left(-6\right)=-34
Փոխարինեք -6-ը y-ով 2x+6y=-34-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x-36=-34
Բազմապատկեք 6 անգամ -6:
2x=2
Գումարեք 36 հավասարման երկու կողմին:
x=1
Բաժանեք երկու կողմերը 2-ի:
x=1,y=-6
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}