Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

6x+5y=1,x-y=2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
6x+5y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
6x=-5y+1
Հանեք 5y հավասարման երկու կողմից:
x=\frac{1}{6}\left(-5y+1\right)
Բաժանեք երկու կողմերը 6-ի:
x=-\frac{5}{6}y+\frac{1}{6}
Բազմապատկեք \frac{1}{6} անգամ -5y+1:
-\frac{5}{6}y+\frac{1}{6}-y=2
Փոխարինեք \frac{-5y+1}{6}-ը x-ով մյուս հավասարման մեջ՝ x-y=2:
-\frac{11}{6}y+\frac{1}{6}=2
Գումարեք -\frac{5y}{6} -y-ին:
-\frac{11}{6}y=\frac{11}{6}
Հանեք \frac{1}{6} հավասարման երկու կողմից:
y=-1
Բաժանեք հավասարման երկու կողմերը -\frac{11}{6}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{5}{6}\left(-1\right)+\frac{1}{6}
Փոխարինեք -1-ը y-ով x=-\frac{5}{6}y+\frac{1}{6}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{5+1}{6}
Բազմապատկեք -\frac{5}{6} անգամ -1:
x=1
Գումարեք \frac{1}{6} \frac{5}{6}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=1,y=-1
Այժմ համակարգը լուծվել է:
6x+5y=1,x-y=2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}6&5\\1&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-5}&-\frac{5}{6\left(-1\right)-5}\\-\frac{1}{6\left(-1\right)-5}&\frac{6}{6\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{6}{11}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}+\frac{5}{11}\times 2\\\frac{1}{11}-\frac{6}{11}\times 2\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=-1
Արտահանեք մատրիցայի x և y տարրերը:
6x+5y=1,x-y=2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
6x+5y=1,6x+6\left(-1\right)y=6\times 2
6x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 6-ով:
6x+5y=1,6x-6y=12
Պարզեցնել:
6x-6x+5y+6y=1-12
Հանեք 6x-6y=12 6x+5y=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
5y+6y=1-12
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
11y=1-12
Գումարեք 5y 6y-ին:
11y=-11
Գումարեք 1 -12-ին:
y=-1
Բաժանեք երկու կողմերը 11-ի:
x-\left(-1\right)=2
Փոխարինեք -1-ը y-ով x-y=2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=1
Հանեք 1 հավասարման երկու կողմից:
x=1,y=-1
Այժմ համակարգը լուծվել է: