\left\{ \begin{array} { l } { 5 x - 6 y = - 3 } \\ { 5 x - 3 y = 3 } \end{array} \right.
Լուծել x, y-ի համար
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
y=2
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
5x-6y=-3,5x-3y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
5x-6y=-3
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
5x=6y-3
Գումարեք 6y հավասարման երկու կողմին:
x=\frac{1}{5}\left(6y-3\right)
Բաժանեք երկու կողմերը 5-ի:
x=\frac{6}{5}y-\frac{3}{5}
Բազմապատկեք \frac{1}{5} անգամ 6y-3:
5\left(\frac{6}{5}y-\frac{3}{5}\right)-3y=3
Փոխարինեք \frac{6y-3}{5}-ը x-ով մյուս հավասարման մեջ՝ 5x-3y=3:
6y-3-3y=3
Բազմապատկեք 5 անգամ \frac{6y-3}{5}:
3y-3=3
Գումարեք 6y -3y-ին:
3y=6
Գումարեք 3 հավասարման երկու կողմին:
y=2
Բաժանեք երկու կողմերը 3-ի:
x=\frac{6}{5}\times 2-\frac{3}{5}
Փոխարինեք 2-ը y-ով x=\frac{6}{5}y-\frac{3}{5}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{12-3}{5}
Բազմապատկեք \frac{6}{5} անգամ 2:
x=\frac{9}{5}
Գումարեք -\frac{3}{5} \frac{12}{5}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{9}{5},y=2
Այժմ համակարգը լուծվել է:
5x-6y=-3,5x-3y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 5\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 5\right)}\\-\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)+\frac{2}{5}\times 3\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{9}{5},y=2
Արտահանեք մատրիցայի x և y տարրերը:
5x-6y=-3,5x-3y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5x-5x-6y+3y=-3-3
Հանեք 5x-3y=3 5x-6y=-3-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-6y+3y=-3-3
Գումարեք 5x -5x-ին: 5x-ը և -5x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-3y=-3-3
Գումարեք -6y 3y-ին:
-3y=-6
Գումարեք -3 -3-ին:
y=2
Բաժանեք երկու կողմերը -3-ի:
5x-3\times 2=3
Փոխարինեք 2-ը y-ով 5x-3y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
5x-6=3
Բազմապատկեք -3 անգամ 2:
5x=9
Գումարեք 6 հավասարման երկու կողմին:
x=\frac{9}{5}
Բաժանեք երկու կողմերը 5-ի:
x=\frac{9}{5},y=2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}