\left\{ \begin{array} { l } { 5 x - 4 y = 19 } \\ { 3 x + 2 y = 7 } \end{array} \right.
Լուծել x, y-ի համար
x=3
y=-1
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
5x-4y=19,3x+2y=7
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
5x-4y=19
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
5x=4y+19
Գումարեք 4y հավասարման երկու կողմին:
x=\frac{1}{5}\left(4y+19\right)
Բաժանեք երկու կողմերը 5-ի:
x=\frac{4}{5}y+\frac{19}{5}
Բազմապատկեք \frac{1}{5} անգամ 4y+19:
3\left(\frac{4}{5}y+\frac{19}{5}\right)+2y=7
Փոխարինեք \frac{4y+19}{5}-ը x-ով մյուս հավասարման մեջ՝ 3x+2y=7:
\frac{12}{5}y+\frac{57}{5}+2y=7
Բազմապատկեք 3 անգամ \frac{4y+19}{5}:
\frac{22}{5}y+\frac{57}{5}=7
Գումարեք \frac{12y}{5} 2y-ին:
\frac{22}{5}y=-\frac{22}{5}
Հանեք \frac{57}{5} հավասարման երկու կողմից:
y=-1
Բաժանեք հավասարման երկու կողմերը \frac{22}{5}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{4}{5}\left(-1\right)+\frac{19}{5}
Փոխարինեք -1-ը y-ով x=\frac{4}{5}y+\frac{19}{5}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-4+19}{5}
Բազմապատկեք \frac{4}{5} անգամ -1:
x=3
Գումարեք \frac{19}{5} -\frac{4}{5}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=-1
Այժմ համակարգը լուծվել է:
5x-4y=19,3x+2y=7
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}5&-4\\3&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\times 3\right)}&-\frac{-4}{5\times 2-\left(-4\times 3\right)}\\-\frac{3}{5\times 2-\left(-4\times 3\right)}&\frac{5}{5\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{3}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{2}{11}\times 7\\-\frac{3}{22}\times 19+\frac{5}{22}\times 7\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=-1
Արտահանեք մատրիցայի x և y տարրերը:
5x-4y=19,3x+2y=7
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3\times 5x+3\left(-4\right)y=3\times 19,5\times 3x+5\times 2y=5\times 7
5x-ը և 3x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 5-ով:
15x-12y=57,15x+10y=35
Պարզեցնել:
15x-15x-12y-10y=57-35
Հանեք 15x+10y=35 15x-12y=57-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-12y-10y=57-35
Գումարեք 15x -15x-ին: 15x-ը և -15x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-22y=57-35
Գումարեք -12y -10y-ին:
-22y=22
Գումարեք 57 -35-ին:
y=-1
Բաժանեք երկու կողմերը -22-ի:
3x+2\left(-1\right)=7
Փոխարինեք -1-ը y-ով 3x+2y=7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
3x-2=7
Բազմապատկեք 2 անգամ -1:
3x=9
Գումարեք 2 հավասարման երկու կողմին:
x=3
Բաժանեք երկու կողմերը 3-ի:
x=3,y=-1
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}