\left\{ \begin{array} { l } { 4 x - y = 14 } \\ { 6 x + y = 16 } \end{array} \right.
Լուծել x, y-ի համար
x=3
y=-2
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
4x-y=14,6x+y=16
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
4x-y=14
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
4x=y+14
Գումարեք y հավասարման երկու կողմին:
x=\frac{1}{4}\left(y+14\right)
Բաժանեք երկու կողմերը 4-ի:
x=\frac{1}{4}y+\frac{7}{2}
Բազմապատկեք \frac{1}{4} անգամ y+14:
6\left(\frac{1}{4}y+\frac{7}{2}\right)+y=16
Փոխարինեք \frac{y}{4}+\frac{7}{2}-ը x-ով մյուս հավասարման մեջ՝ 6x+y=16:
\frac{3}{2}y+21+y=16
Բազմապատկեք 6 անգամ \frac{y}{4}+\frac{7}{2}:
\frac{5}{2}y+21=16
Գումարեք \frac{3y}{2} y-ին:
\frac{5}{2}y=-5
Հանեք 21 հավասարման երկու կողմից:
y=-2
Բաժանեք հավասարման երկու կողմերը \frac{5}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{1}{4}\left(-2\right)+\frac{7}{2}
Փոխարինեք -2-ը y-ով x=\frac{1}{4}y+\frac{7}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-1+7}{2}
Բազմապատկեք \frac{1}{4} անգամ -2:
x=3
Գումարեք \frac{7}{2} -\frac{1}{2}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=-2
Այժմ համակարգը լուծվել է:
4x-y=14,6x+y=16
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}4&-1\\6&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-6\right)}&-\frac{-1}{4-\left(-6\right)}\\-\frac{6}{4-\left(-6\right)}&\frac{4}{4-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 14+\frac{1}{10}\times 16\\-\frac{3}{5}\times 14+\frac{2}{5}\times 16\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=-2
Արտահանեք մատրիցայի x և y տարրերը:
4x-y=14,6x+y=16
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
6\times 4x+6\left(-1\right)y=6\times 14,4\times 6x+4y=4\times 16
4x-ը և 6x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 6-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 4-ով:
24x-6y=84,24x+4y=64
Պարզեցնել:
24x-24x-6y-4y=84-64
Հանեք 24x+4y=64 24x-6y=84-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-6y-4y=84-64
Գումարեք 24x -24x-ին: 24x-ը և -24x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-10y=84-64
Գումարեք -6y -4y-ին:
-10y=20
Գումարեք 84 -64-ին:
y=-2
Բաժանեք երկու կողմերը -10-ի:
6x-2=16
Փոխարինեք -2-ը y-ով 6x+y=16-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
6x=18
Գումարեք 2 հավասարման երկու կողմին:
x=3
Բաժանեք երկու կողմերը 6-ի:
x=3,y=-2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}