\left\{ \begin{array} { l } { 4 x - 3 y = 21 } \\ { x = - y } \end{array} \right.
Լուծել x, y-ի համար
x=3
y=-3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x+y=0
Դիտարկել երկրորդ հավասարումը: Հավելել y-ը երկու կողմերում:
4x-3y=21,x+y=0
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
4x-3y=21
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
4x=3y+21
Գումարեք 3y հավասարման երկու կողմին:
x=\frac{1}{4}\left(3y+21\right)
Բաժանեք երկու կողմերը 4-ի:
x=\frac{3}{4}y+\frac{21}{4}
Բազմապատկեք \frac{1}{4} անգամ 21+3y:
\frac{3}{4}y+\frac{21}{4}+y=0
Փոխարինեք \frac{21+3y}{4}-ը x-ով մյուս հավասարման մեջ՝ x+y=0:
\frac{7}{4}y+\frac{21}{4}=0
Գումարեք \frac{3y}{4} y-ին:
\frac{7}{4}y=-\frac{21}{4}
Հանեք \frac{21}{4} հավասարման երկու կողմից:
y=-3
Բաժանեք հավասարման երկու կողմերը \frac{7}{4}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{3}{4}\left(-3\right)+\frac{21}{4}
Փոխարինեք -3-ը y-ով x=\frac{3}{4}y+\frac{21}{4}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-9+21}{4}
Բազմապատկեք \frac{3}{4} անգամ -3:
x=3
Գումարեք \frac{21}{4} -\frac{9}{4}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=-3
Այժմ համակարգը լուծվել է:
x+y=0
Դիտարկել երկրորդ հավասարումը: Հավելել y-ը երկու կողմերում:
4x-3y=21,x+y=0
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\0\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}4&-3\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\right)}&-\frac{-3}{4-\left(-3\right)}\\-\frac{1}{4-\left(-3\right)}&\frac{4}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}21\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{7}\\-\frac{1}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}21\\0\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 21\\-\frac{1}{7}\times 21\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=-3
Արտահանեք մատրիցայի x և y տարրերը:
x+y=0
Դիտարկել երկրորդ հավասարումը: Հավելել y-ը երկու կողմերում:
4x-3y=21,x+y=0
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4x-3y=21,4x+4y=0
4x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 4-ով:
4x-4x-3y-4y=21
Հանեք 4x+4y=0 4x-3y=21-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-3y-4y=21
Գումարեք 4x -4x-ին: 4x-ը և -4x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-7y=21
Գումարեք -3y -4y-ին:
y=-3
Բաժանեք երկու կողմերը -7-ի:
x-3=0
Փոխարինեք -3-ը y-ով x+y=0-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3
Գումարեք 3 հավասարման երկու կողմին:
x=3,y=-3
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}