\left\{ \begin{array} { l } { 4 x + 2 y = - 2 } \\ { 2 x + 3 y = - 7 } \end{array} \right.
Լուծել x, y-ի համար
x=1
y=-3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
4x+2y=-2,2x+3y=-7
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
4x+2y=-2
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
4x=-2y-2
Հանեք 2y հավասարման երկու կողմից:
x=\frac{1}{4}\left(-2y-2\right)
Բաժանեք երկու կողմերը 4-ի:
x=-\frac{1}{2}y-\frac{1}{2}
Բազմապատկեք \frac{1}{4} անգամ -2y-2:
2\left(-\frac{1}{2}y-\frac{1}{2}\right)+3y=-7
Փոխարինեք \frac{-y-1}{2}-ը x-ով մյուս հավասարման մեջ՝ 2x+3y=-7:
-y-1+3y=-7
Բազմապատկեք 2 անգամ \frac{-y-1}{2}:
2y-1=-7
Գումարեք -y 3y-ին:
2y=-6
Գումարեք 1 հավասարման երկու կողմին:
y=-3
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{1}{2}\left(-3\right)-\frac{1}{2}
Փոխարինեք -3-ը y-ով x=-\frac{1}{2}y-\frac{1}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{3-1}{2}
Բազմապատկեք -\frac{1}{2} անգամ -3:
x=1
Գումարեք -\frac{1}{2} \frac{3}{2}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=1,y=-3
Այժմ համակարգը լուծվել է:
4x+2y=-2,2x+3y=-7
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-7\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}4&2\\2&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-2\times 2}&-\frac{2}{4\times 3-2\times 2}\\-\frac{2}{4\times 3-2\times 2}&\frac{4}{4\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{4}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\left(-2\right)-\frac{1}{4}\left(-7\right)\\-\frac{1}{4}\left(-2\right)+\frac{1}{2}\left(-7\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=-3
Արտահանեք մատրիցայի x և y տարրերը:
4x+2y=-2,2x+3y=-7
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 4x+2\times 2y=2\left(-2\right),4\times 2x+4\times 3y=4\left(-7\right)
4x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 4-ով:
8x+4y=-4,8x+12y=-28
Պարզեցնել:
8x-8x+4y-12y=-4+28
Հանեք 8x+12y=-28 8x+4y=-4-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
4y-12y=-4+28
Գումարեք 8x -8x-ին: 8x-ը և -8x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-8y=-4+28
Գումարեք 4y -12y-ին:
-8y=24
Գումարեք -4 28-ին:
y=-3
Բաժանեք երկու կողմերը -8-ի:
2x+3\left(-3\right)=-7
Փոխարինեք -3-ը y-ով 2x+3y=-7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x-9=-7
Բազմապատկեք 3 անգամ -3:
2x=2
Գումարեք 9 հավասարման երկու կողմին:
x=1
Բաժանեք երկու կողմերը 2-ի:
x=1,y=-3
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}