\left\{ \begin{array} { l } { 3 x - 5 y - 4 = 0 } \\ { 15 y = 4 x + 3 } \end{array} \right.
Լուծել x, y-ի համար
x=3
y=1
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x-5y=4
Դիտարկել առաջին հավասարումը: Հավելել 4-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
15y-4x=3
Դիտարկել երկրորդ հավասարումը: Հանեք 4x երկու կողմերից:
3x-5y=4,-4x+15y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x-5y=4
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=5y+4
Գումարեք 5y հավասարման երկու կողմին:
x=\frac{1}{3}\left(5y+4\right)
Բաժանեք երկու կողմերը 3-ի:
x=\frac{5}{3}y+\frac{4}{3}
Բազմապատկեք \frac{1}{3} անգամ 5y+4:
-4\left(\frac{5}{3}y+\frac{4}{3}\right)+15y=3
Փոխարինեք \frac{5y+4}{3}-ը x-ով մյուս հավասարման մեջ՝ -4x+15y=3:
-\frac{20}{3}y-\frac{16}{3}+15y=3
Բազմապատկեք -4 անգամ \frac{5y+4}{3}:
\frac{25}{3}y-\frac{16}{3}=3
Գումարեք -\frac{20y}{3} 15y-ին:
\frac{25}{3}y=\frac{25}{3}
Գումարեք \frac{16}{3} հավասարման երկու կողմին:
y=1
Բաժանեք հավասարման երկու կողմերը \frac{25}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{5+4}{3}
Փոխարինեք 1-ը y-ով x=\frac{5}{3}y+\frac{4}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3
Գումարեք \frac{4}{3} \frac{5}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=1
Այժմ համակարգը լուծվել է:
3x-5y=4
Դիտարկել առաջին հավասարումը: Հավելել 4-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
15y-4x=3
Դիտարկել երկրորդ հավասարումը: Հանեք 4x երկու կողմերից:
3x-5y=4,-4x+15y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{3\times 15-\left(-5\left(-4\right)\right)}&-\frac{-5}{3\times 15-\left(-5\left(-4\right)\right)}\\-\frac{-4}{3\times 15-\left(-5\left(-4\right)\right)}&\frac{3}{3\times 15-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{4}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4+\frac{1}{5}\times 3\\\frac{4}{25}\times 4+\frac{3}{25}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=1
Արտահանեք մատրիցայի x և y տարրերը:
3x-5y=4
Դիտարկել առաջին հավասարումը: Հավելել 4-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
15y-4x=3
Դիտարկել երկրորդ հավասարումը: Հանեք 4x երկու կողմերից:
3x-5y=4,-4x+15y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
-4\times 3x-4\left(-5\right)y=-4\times 4,3\left(-4\right)x+3\times 15y=3\times 3
3x-ը և -4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները -4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
-12x+20y=-16,-12x+45y=9
Պարզեցնել:
-12x+12x+20y-45y=-16-9
Հանեք -12x+45y=9 -12x+20y=-16-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
20y-45y=-16-9
Գումարեք -12x 12x-ին: -12x-ը և 12x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-25y=-16-9
Գումարեք 20y -45y-ին:
-25y=-25
Գումարեք -16 -9-ին:
y=1
Բաժանեք երկու կողմերը -25-ի:
-4x+15=3
Փոխարինեք 1-ը y-ով -4x+15y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
-4x=-12
Հանեք 15 հավասարման երկու կողմից:
x=3
Բաժանեք երկու կողմերը -4-ի:
x=3,y=1
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}