Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

3x-5y=11,x+3y=13
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x-5y=11
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=5y+11
Գումարեք 5y հավասարման երկու կողմին:
x=\frac{1}{3}\left(5y+11\right)
Բաժանեք երկու կողմերը 3-ի:
x=\frac{5}{3}y+\frac{11}{3}
Բազմապատկեք \frac{1}{3} անգամ 5y+11:
\frac{5}{3}y+\frac{11}{3}+3y=13
Փոխարինեք \frac{5y+11}{3}-ը x-ով մյուս հավասարման մեջ՝ x+3y=13:
\frac{14}{3}y+\frac{11}{3}=13
Գումարեք \frac{5y}{3} 3y-ին:
\frac{14}{3}y=\frac{28}{3}
Հանեք \frac{11}{3} հավասարման երկու կողմից:
y=2
Բաժանեք հավասարման երկու կողմերը \frac{14}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{5}{3}\times 2+\frac{11}{3}
Փոխարինեք 2-ը y-ով x=\frac{5}{3}y+\frac{11}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{10+11}{3}
Բազմապատկեք \frac{5}{3} անգամ 2:
x=7
Գումարեք \frac{11}{3} \frac{10}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=7,y=2
Այժմ համակարգը լուծվել է:
3x-5y=11,x+3y=13
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&-5\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\13\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}3&-5\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&-5\\1&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-5}{3\times 3-\left(-5\right)}\\-\frac{1}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\13\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{5}{14}\times 13\\-\frac{1}{14}\times 11+\frac{3}{14}\times 13\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=7,y=2
Արտահանեք մատրիցայի x և y տարրերը:
3x-5y=11,x+3y=13
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x-5y=11,3x+3\times 3y=3\times 13
3x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
3x-5y=11,3x+9y=39
Պարզեցնել:
3x-3x-5y-9y=11-39
Հանեք 3x+9y=39 3x-5y=11-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-5y-9y=11-39
Գումարեք 3x -3x-ին: 3x-ը և -3x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-14y=11-39
Գումարեք -5y -9y-ին:
-14y=-28
Գումարեք 11 -39-ին:
y=2
Բաժանեք երկու կողմերը -14-ի:
x+3\times 2=13
Փոխարինեք 2-ը y-ով x+3y=13-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+6=13
Բազմապատկեք 3 անգամ 2:
x=7
Հանեք 6 հավասարման երկու կողմից:
x=7,y=2
Այժմ համակարգը լուծվել է: