Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

3x-2y=1,x+y=12
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x-2y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=2y+1
Գումարեք 2y հավասարման երկու կողմին:
x=\frac{1}{3}\left(2y+1\right)
Բաժանեք երկու կողմերը 3-ի:
x=\frac{2}{3}y+\frac{1}{3}
Բազմապատկեք \frac{1}{3} անգամ 2y+1:
\frac{2}{3}y+\frac{1}{3}+y=12
Փոխարինեք \frac{2y+1}{3}-ը x-ով մյուս հավասարման մեջ՝ x+y=12:
\frac{5}{3}y+\frac{1}{3}=12
Գումարեք \frac{2y}{3} y-ին:
\frac{5}{3}y=\frac{35}{3}
Հանեք \frac{1}{3} հավասարման երկու կողմից:
y=7
Բաժանեք հավասարման երկու կողմերը \frac{5}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{2}{3}\times 7+\frac{1}{3}
Փոխարինեք 7-ը y-ով x=\frac{2}{3}y+\frac{1}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{14+1}{3}
Բազմապատկեք \frac{2}{3} անգամ 7:
x=5
Գումարեք \frac{1}{3} \frac{14}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=5,y=7
Այժմ համակարգը լուծվել է:
3x-2y=1,x+y=12
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\12\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&-2\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{2}{5}\times 12\\-\frac{1}{5}+\frac{3}{5}\times 12\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Կատարել թվաբանություն:
x=5,y=7
Արտահանեք մատրիցայի x և y տարրերը:
3x-2y=1,x+y=12
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x-2y=1,3x+3y=3\times 12
3x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
3x-2y=1,3x+3y=36
Պարզեցնել:
3x-3x-2y-3y=1-36
Հանեք 3x+3y=36 3x-2y=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-2y-3y=1-36
Գումարեք 3x -3x-ին: 3x-ը և -3x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-5y=1-36
Գումարեք -2y -3y-ին:
-5y=-35
Գումարեք 1 -36-ին:
y=7
Բաժանեք երկու կողմերը -5-ի:
x+7=12
Փոխարինեք 7-ը y-ով x+y=12-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=5
Հանեք 7 հավասարման երկու կողմից:
x=5,y=7
Այժմ համակարգը լուծվել է: