\left\{ \begin{array} { l } { 3 x + 4 y = 5 } \\ { 5 x + 5 y = 7 } \end{array} \right.
Լուծել x, y-ի համար
x=\frac{3}{5}=0.6
y=\frac{4}{5}=0.8
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x+4y=5,5x+5y=7
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+4y=5
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-4y+5
Հանեք 4y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-4y+5\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{4}{3}y+\frac{5}{3}
Բազմապատկեք \frac{1}{3} անգամ -4y+5:
5\left(-\frac{4}{3}y+\frac{5}{3}\right)+5y=7
Փոխարինեք \frac{-4y+5}{3}-ը x-ով մյուս հավասարման մեջ՝ 5x+5y=7:
-\frac{20}{3}y+\frac{25}{3}+5y=7
Բազմապատկեք 5 անգամ \frac{-4y+5}{3}:
-\frac{5}{3}y+\frac{25}{3}=7
Գումարեք -\frac{20y}{3} 5y-ին:
-\frac{5}{3}y=-\frac{4}{3}
Հանեք \frac{25}{3} հավասարման երկու կողմից:
y=\frac{4}{5}
Բաժանեք հավասարման երկու կողմերը -\frac{5}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{4}{3}\times \frac{4}{5}+\frac{5}{3}
Փոխարինեք \frac{4}{5}-ը y-ով x=-\frac{4}{3}y+\frac{5}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{16}{15}+\frac{5}{3}
Բազմապատկեք -\frac{4}{3} անգամ \frac{4}{5}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{3}{5}
Գումարեք \frac{5}{3} -\frac{16}{15}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{3}{5},y=\frac{4}{5}
Այժմ համակարգը լուծվել է:
3x+4y=5,5x+5y=7
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&4\\5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&4\\5&5\end{matrix}\right))\left(\begin{matrix}3&4\\5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&4\\5&5\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-4\times 5}&-\frac{4}{3\times 5-4\times 5}\\-\frac{5}{3\times 5-4\times 5}&\frac{3}{3\times 5-4\times 5}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{4}{5}\\1&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5+\frac{4}{5}\times 7\\5-\frac{3}{5}\times 7\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\\\frac{4}{5}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{3}{5},y=\frac{4}{5}
Արտահանեք մատրիցայի x և y տարրերը:
3x+4y=5,5x+5y=7
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5\times 3x+5\times 4y=5\times 5,3\times 5x+3\times 5y=3\times 7
3x-ը և 5x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 5-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
15x+20y=25,15x+15y=21
Պարզեցնել:
15x-15x+20y-15y=25-21
Հանեք 15x+15y=21 15x+20y=25-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
20y-15y=25-21
Գումարեք 15x -15x-ին: 15x-ը և -15x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
5y=25-21
Գումարեք 20y -15y-ին:
5y=4
Գումարեք 25 -21-ին:
y=\frac{4}{5}
Բաժանեք երկու կողմերը 5-ի:
5x+5\times \frac{4}{5}=7
Փոխարինեք \frac{4}{5}-ը y-ով 5x+5y=7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
5x+4=7
Բազմապատկեք 5 անգամ \frac{4}{5}:
5x=3
Հանեք 4 հավասարման երկու կողմից:
x=\frac{3}{5}
Բաժանեք երկու կողմերը 5-ի:
x=\frac{3}{5},y=\frac{4}{5}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}