\left\{ \begin{array} { l } { 3 x + 2 y = 1 } \\ { 2 x - 7 y = - 2 } \end{array} \right.
Լուծել x, y-ի համար
x=\frac{3}{25}=0.12
y=\frac{8}{25}=0.32
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x+2y=1,2x-7y=-2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+2y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-2y+1
Հանեք 2y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-2y+1\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{2}{3}y+\frac{1}{3}
Բազմապատկեք \frac{1}{3} անգամ -2y+1:
2\left(-\frac{2}{3}y+\frac{1}{3}\right)-7y=-2
Փոխարինեք \frac{-2y+1}{3}-ը x-ով մյուս հավասարման մեջ՝ 2x-7y=-2:
-\frac{4}{3}y+\frac{2}{3}-7y=-2
Բազմապատկեք 2 անգամ \frac{-2y+1}{3}:
-\frac{25}{3}y+\frac{2}{3}=-2
Գումարեք -\frac{4y}{3} -7y-ին:
-\frac{25}{3}y=-\frac{8}{3}
Հանեք \frac{2}{3} հավասարման երկու կողմից:
y=\frac{8}{25}
Բաժանեք հավասարման երկու կողմերը -\frac{25}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{2}{3}\times \frac{8}{25}+\frac{1}{3}
Փոխարինեք \frac{8}{25}-ը y-ով x=-\frac{2}{3}y+\frac{1}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{16}{75}+\frac{1}{3}
Բազմապատկեք -\frac{2}{3} անգամ \frac{8}{25}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{3}{25}
Գումարեք \frac{1}{3} -\frac{16}{75}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{3}{25},y=\frac{8}{25}
Այժմ համակարգը լուծվել է:
3x+2y=1,2x-7y=-2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&2\\2&-7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3\left(-7\right)-2\times 2}&-\frac{2}{3\left(-7\right)-2\times 2}\\-\frac{2}{3\left(-7\right)-2\times 2}&\frac{3}{3\left(-7\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}&\frac{2}{25}\\\frac{2}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}+\frac{2}{25}\left(-2\right)\\\frac{2}{25}-\frac{3}{25}\left(-2\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\\\frac{8}{25}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{3}{25},y=\frac{8}{25}
Արտահանեք մատրիցայի x և y տարրերը:
3x+2y=1,2x-7y=-2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 3x+2\times 2y=2,3\times 2x+3\left(-7\right)y=3\left(-2\right)
3x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
6x+4y=2,6x-21y=-6
Պարզեցնել:
6x-6x+4y+21y=2+6
Հանեք 6x-21y=-6 6x+4y=2-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
4y+21y=2+6
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
25y=2+6
Գումարեք 4y 21y-ին:
25y=8
Գումարեք 2 6-ին:
y=\frac{8}{25}
Բաժանեք երկու կողմերը 25-ի:
2x-7\times \frac{8}{25}=-2
Փոխարինեք \frac{8}{25}-ը y-ով 2x-7y=-2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x-\frac{56}{25}=-2
Բազմապատկեք -7 անգամ \frac{8}{25}:
2x=\frac{6}{25}
Գումարեք \frac{56}{25} հավասարման երկու կողմին:
x=\frac{3}{25}
Բաժանեք երկու կողմերը 2-ի:
x=\frac{3}{25},y=\frac{8}{25}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}