\left\{ \begin{array} { l } { 25 x + 35 y = 16500 } \\ { x + y = 500 } \end{array} \right.
Լուծել x, y-ի համար
x=100
y=400
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
25x+35y=16500,x+y=500
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
25x+35y=16500
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
25x=-35y+16500
Հանեք 35y հավասարման երկու կողմից:
x=\frac{1}{25}\left(-35y+16500\right)
Բաժանեք երկու կողմերը 25-ի:
x=-\frac{7}{5}y+660
Բազմապատկեք \frac{1}{25} անգամ -35y+16500:
-\frac{7}{5}y+660+y=500
Փոխարինեք -\frac{7y}{5}+660-ը x-ով մյուս հավասարման մեջ՝ x+y=500:
-\frac{2}{5}y+660=500
Գումարեք -\frac{7y}{5} y-ին:
-\frac{2}{5}y=-160
Հանեք 660 հավասարման երկու կողմից:
y=400
Բաժանեք հավասարման երկու կողմերը -\frac{2}{5}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{7}{5}\times 400+660
Փոխարինեք 400-ը y-ով x=-\frac{7}{5}y+660-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-560+660
Բազմապատկեք -\frac{7}{5} անգամ 400:
x=100
Գումարեք 660 -560-ին:
x=100,y=400
Այժմ համակարգը լուծվել է:
25x+35y=16500,x+y=500
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16500\\500\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}25&35\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25-35}&-\frac{35}{25-35}\\-\frac{1}{25-35}&\frac{25}{25-35}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{7}{2}\\\frac{1}{10}&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 16500+\frac{7}{2}\times 500\\\frac{1}{10}\times 16500-\frac{5}{2}\times 500\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\400\end{matrix}\right)
Կատարել թվաբանություն:
x=100,y=400
Արտահանեք մատրիցայի x և y տարրերը:
25x+35y=16500,x+y=500
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
25x+35y=16500,25x+25y=25\times 500
25x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 25-ով:
25x+35y=16500,25x+25y=12500
Պարզեցնել:
25x-25x+35y-25y=16500-12500
Հանեք 25x+25y=12500 25x+35y=16500-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
35y-25y=16500-12500
Գումարեք 25x -25x-ին: 25x-ը և -25x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
10y=16500-12500
Գումարեք 35y -25y-ին:
10y=4000
Գումարեք 16500 -12500-ին:
y=400
Բաժանեք երկու կողմերը 10-ի:
x+400=500
Փոխարինեք 400-ը y-ով x+y=500-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=100
Հանեք 400 հավասարման երկու կողմից:
x=100,y=400
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}