Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x-5y=7,4x+3y=1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x-5y=7
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=5y+7
Գումարեք 5y հավասարման երկու կողմին:
x=\frac{1}{2}\left(5y+7\right)
Բաժանեք երկու կողմերը 2-ի:
x=\frac{5}{2}y+\frac{7}{2}
Բազմապատկեք \frac{1}{2} անգամ 5y+7:
4\left(\frac{5}{2}y+\frac{7}{2}\right)+3y=1
Փոխարինեք \frac{5y+7}{2}-ը x-ով մյուս հավասարման մեջ՝ 4x+3y=1:
10y+14+3y=1
Բազմապատկեք 4 անգամ \frac{5y+7}{2}:
13y+14=1
Գումարեք 10y 3y-ին:
13y=-13
Հանեք 14 հավասարման երկու կողմից:
y=-1
Բաժանեք երկու կողմերը 13-ի:
x=\frac{5}{2}\left(-1\right)+\frac{7}{2}
Փոխարինեք -1-ը y-ով x=\frac{5}{2}y+\frac{7}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-5+7}{2}
Բազմապատկեք \frac{5}{2} անգամ -1:
x=1
Գումարեք \frac{7}{2} -\frac{5}{2}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=1,y=-1
Այժմ համակարգը լուծվել է:
2x-5y=7,4x+3y=1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&-5\\4&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-5\times 4\right)}&-\frac{-5}{2\times 3-\left(-5\times 4\right)}\\-\frac{4}{2\times 3-\left(-5\times 4\right)}&\frac{2}{2\times 3-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}&\frac{5}{26}\\-\frac{2}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}\times 7+\frac{5}{26}\\-\frac{2}{13}\times 7+\frac{1}{13}\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=-1
Արտահանեք մատրիցայի x և y տարրերը:
2x-5y=7,4x+3y=1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4\times 2x+4\left(-5\right)y=4\times 7,2\times 4x+2\times 3y=2
2x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
8x-20y=28,8x+6y=2
Պարզեցնել:
8x-8x-20y-6y=28-2
Հանեք 8x+6y=2 8x-20y=28-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-20y-6y=28-2
Գումարեք 8x -8x-ին: 8x-ը և -8x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-26y=28-2
Գումարեք -20y -6y-ին:
-26y=26
Գումարեք 28 -2-ին:
y=-1
Բաժանեք երկու կողմերը -26-ի:
4x+3\left(-1\right)=1
Փոխարինեք -1-ը y-ով 4x+3y=1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
4x-3=1
Բազմապատկեք 3 անգամ -1:
4x=4
Գումարեք 3 հավասարման երկու կողմին:
x=1
Բաժանեք երկու կողմերը 4-ի:
x=1,y=-1
Այժմ համակարգը լուծվել է: