Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x-3y=3,3x+2y=11
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x-3y=3
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=3y+3
Գումարեք 3y հավասարման երկու կողմին:
x=\frac{1}{2}\left(3y+3\right)
Բաժանեք երկու կողմերը 2-ի:
x=\frac{3}{2}y+\frac{3}{2}
Բազմապատկեք \frac{1}{2} անգամ 3+3y:
3\left(\frac{3}{2}y+\frac{3}{2}\right)+2y=11
Փոխարինեք \frac{3+3y}{2}-ը x-ով մյուս հավասարման մեջ՝ 3x+2y=11:
\frac{9}{2}y+\frac{9}{2}+2y=11
Բազմապատկեք 3 անգամ \frac{3+3y}{2}:
\frac{13}{2}y+\frac{9}{2}=11
Գումարեք \frac{9y}{2} 2y-ին:
\frac{13}{2}y=\frac{13}{2}
Հանեք \frac{9}{2} հավասարման երկու կողմից:
y=1
Բաժանեք հավասարման երկու կողմերը \frac{13}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{3+3}{2}
Փոխարինեք 1-ը y-ով x=\frac{3}{2}y+\frac{3}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3
Գումարեք \frac{3}{2} \frac{3}{2}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=1
Այժմ համակարգը լուծվել է:
2x-3y=3,3x+2y=11
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\11\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&-3\\3&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{3}{13}\times 11\\-\frac{3}{13}\times 3+\frac{2}{13}\times 11\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=1
Արտահանեք մատրիցայի x և y տարրերը:
2x-3y=3,3x+2y=11
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3\times 2x+3\left(-3\right)y=3\times 3,2\times 3x+2\times 2y=2\times 11
2x-ը և 3x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
6x-9y=9,6x+4y=22
Պարզեցնել:
6x-6x-9y-4y=9-22
Հանեք 6x+4y=22 6x-9y=9-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-9y-4y=9-22
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-13y=9-22
Գումարեք -9y -4y-ին:
-13y=-13
Գումարեք 9 -22-ին:
y=1
Բաժանեք երկու կողմերը -13-ի:
3x+2=11
Փոխարինեք 1-ը y-ով 3x+2y=11-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
3x=9
Հանեք 2 հավասարման երկու կողմից:
x=3
Բաժանեք երկու կողմերը 3-ի:
x=3,y=1
Այժմ համակարգը լուծվել է: