\left\{ \begin{array} { l } { 2 x + y = - 2 } \\ { 4 x + 5 y = 8 } \end{array} \right.
Լուծել x, y-ի համար
x=-3
y=4
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x+y=-2,4x+5y=8
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+y=-2
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-y-2
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-y-2\right)
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{1}{2}y-1
Բազմապատկեք \frac{1}{2} անգամ -y-2:
4\left(-\frac{1}{2}y-1\right)+5y=8
Փոխարինեք -\frac{y}{2}-1-ը x-ով մյուս հավասարման մեջ՝ 4x+5y=8:
-2y-4+5y=8
Բազմապատկեք 4 անգամ -\frac{y}{2}-1:
3y-4=8
Գումարեք -2y 5y-ին:
3y=12
Գումարեք 4 հավասարման երկու կողմին:
y=4
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{1}{2}\times 4-1
Փոխարինեք 4-ը y-ով x=-\frac{1}{2}y-1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-2-1
Բազմապատկեք -\frac{1}{2} անգամ 4:
x=-3
Գումարեք -1 -2-ին:
x=-3,y=4
Այժմ համակարգը լուծվել է:
2x+y=-2,4x+5y=8
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&1\\4&5\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-4}&-\frac{1}{2\times 5-4}\\-\frac{4}{2\times 5-4}&\frac{2}{2\times 5-4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{1}{6}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-2\right)-\frac{1}{6}\times 8\\-\frac{2}{3}\left(-2\right)+\frac{1}{3}\times 8\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Կատարել թվաբանություն:
x=-3,y=4
Արտահանեք մատրիցայի x և y տարրերը:
2x+y=-2,4x+5y=8
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4\times 2x+4y=4\left(-2\right),2\times 4x+2\times 5y=2\times 8
2x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
8x+4y=-8,8x+10y=16
Պարզեցնել:
8x-8x+4y-10y=-8-16
Հանեք 8x+10y=16 8x+4y=-8-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
4y-10y=-8-16
Գումարեք 8x -8x-ին: 8x-ը և -8x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-6y=-8-16
Գումարեք 4y -10y-ին:
-6y=-24
Գումարեք -8 -16-ին:
y=4
Բաժանեք երկու կողմերը -6-ի:
4x+5\times 4=8
Փոխարինեք 4-ը y-ով 4x+5y=8-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
4x+20=8
Բազմապատկեք 5 անգամ 4:
4x=-12
Հանեք 20 հավասարման երկու կողմից:
x=-3
Բաժանեք երկու կողմերը 4-ի:
x=-3,y=4
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}