\left\{ \begin{array} { l } { 2 x + 14 y = - 28 } \\ { - 4 x - 14 y = 28 } \end{array} \right.
Լուծել x, y-ի համար
x=0
y=-2
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x+14y=-28,-4x-14y=28
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+14y=-28
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-14y-28
Հանեք 14y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-14y-28\right)
Բաժանեք երկու կողմերը 2-ի:
x=-7y-14
Բազմապատկեք \frac{1}{2} անգամ -14y-28:
-4\left(-7y-14\right)-14y=28
Փոխարինեք -7y-14-ը x-ով մյուս հավասարման մեջ՝ -4x-14y=28:
28y+56-14y=28
Բազմապատկեք -4 անգամ -7y-14:
14y+56=28
Գումարեք 28y -14y-ին:
14y=-28
Հանեք 56 հավասարման երկու կողմից:
y=-2
Բաժանեք երկու կողմերը 14-ի:
x=-7\left(-2\right)-14
Փոխարինեք -2-ը y-ով x=-7y-14-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=14-14
Բազմապատկեք -7 անգամ -2:
x=0
Գումարեք -14 14-ին:
x=0,y=-2
Այժմ համակարգը լուծվել է:
2x+14y=-28,-4x-14y=28
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\28\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{2\left(-14\right)-14\left(-4\right)}&-\frac{14}{2\left(-14\right)-14\left(-4\right)}\\-\frac{-4}{2\left(-14\right)-14\left(-4\right)}&\frac{2}{2\left(-14\right)-14\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\\frac{1}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-28\right)-\frac{1}{2}\times 28\\\frac{1}{7}\left(-28\right)+\frac{1}{14}\times 28\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Կատարել թվաբանություն:
x=0,y=-2
Արտահանեք մատրիցայի x և y տարրերը:
2x+14y=-28,-4x-14y=28
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
-4\times 2x-4\times 14y=-4\left(-28\right),2\left(-4\right)x+2\left(-14\right)y=2\times 28
2x-ը և -4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները -4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
-8x-56y=112,-8x-28y=56
Պարզեցնել:
-8x+8x-56y+28y=112-56
Հանեք -8x-28y=56 -8x-56y=112-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-56y+28y=112-56
Գումարեք -8x 8x-ին: -8x-ը և 8x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-28y=112-56
Գումարեք -56y 28y-ին:
-28y=56
Գումարեք 112 -56-ին:
y=-2
Բաժանեք երկու կողմերը -28-ի:
-4x-14\left(-2\right)=28
Փոխարինեք -2-ը y-ով -4x-14y=28-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
-4x+28=28
Բազմապատկեք -14 անգամ -2:
-4x=0
Հանեք 28 հավասարման երկու կողմից:
x=0
Բաժանեք երկու կողմերը -4-ի:
x=0,y=-2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}