Skip դեպի հիմնական բովանդակությունը
Լուծել a, b-ի համար
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

-1+a+b=0
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
a+b=1
Հավելել 1-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
-9+3a+b=0
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3a+b=9
Հավելել 9-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
a+b=1,3a+b=9
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
a+b=1
Ընտրեք հավասարումներից մեկը և լուծեք այն a-ի համար՝ առանձնացնելով a-ը հավասարության նշանի ձախ կողմում:
a=-b+1
Հանեք b հավասարման երկու կողմից:
3\left(-b+1\right)+b=9
Փոխարինեք -b+1-ը a-ով մյուս հավասարման մեջ՝ 3a+b=9:
-3b+3+b=9
Բազմապատկեք 3 անգամ -b+1:
-2b+3=9
Գումարեք -3b b-ին:
-2b=6
Հանեք 3 հավասարման երկու կողմից:
b=-3
Բաժանեք երկու կողմերը -2-ի:
a=-\left(-3\right)+1
Փոխարինեք -3-ը b-ով a=-b+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=3+1
Բազմապատկեք -1 անգամ -3:
a=4
Գումարեք 1 3-ին:
a=4,b=-3
Այժմ համակարգը լուծվել է:
-1+a+b=0
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
a+b=1
Հավելել 1-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
-9+3a+b=0
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3a+b=9
Հավելել 9-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
a+b=1,3a+b=9
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\3&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Կատարել թվաբանություն:
a=4,b=-3
Արտահանեք մատրիցայի a և b տարրերը:
-1+a+b=0
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
a+b=1
Հավելել 1-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
-9+3a+b=0
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3a+b=9
Հավելել 9-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
a+b=1,3a+b=9
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
a-3a+b-b=1-9
Հանեք 3a+b=9 a+b=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
a-3a=1-9
Գումարեք b -b-ին: b-ը և -b-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-2a=1-9
Գումարեք a -3a-ին:
-2a=-8
Գումարեք 1 -9-ին:
a=4
Բաժանեք երկու կողմերը -2-ի:
3\times 4+b=9
Փոխարինեք 4-ը a-ով 3a+b=9-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես b-ի համար:
12+b=9
Բազմապատկեք 3 անգամ 4:
b=-3
Հանեք 12 հավասարման երկու կողմից:
a=4,b=-3
Այժմ համակարգը լուծվել է: