\left\{ \begin{array} { l } { - 2 = 3 x + y } \\ { 2 = - 7 x + y } \end{array} \right.
Լուծել x, y-ի համար
x=-\frac{2}{5}=-0.4
y=-\frac{4}{5}=-0.8
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x+y=-2
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
-7x+y=2
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3x+y=-2,-7x+y=2
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+y=-2
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-y-2
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-y-2\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{1}{3}y-\frac{2}{3}
Բազմապատկեք \frac{1}{3} անգամ -y-2:
-7\left(-\frac{1}{3}y-\frac{2}{3}\right)+y=2
Փոխարինեք \frac{-y-2}{3}-ը x-ով մյուս հավասարման մեջ՝ -7x+y=2:
\frac{7}{3}y+\frac{14}{3}+y=2
Բազմապատկեք -7 անգամ \frac{-y-2}{3}:
\frac{10}{3}y+\frac{14}{3}=2
Գումարեք \frac{7y}{3} y-ին:
\frac{10}{3}y=-\frac{8}{3}
Հանեք \frac{14}{3} հավասարման երկու կողմից:
y=-\frac{4}{5}
Բաժանեք հավասարման երկու կողմերը \frac{10}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{1}{3}\left(-\frac{4}{5}\right)-\frac{2}{3}
Փոխարինեք -\frac{4}{5}-ը y-ով x=-\frac{1}{3}y-\frac{2}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{4}{15}-\frac{2}{3}
Բազմապատկեք -\frac{1}{3} անգամ -\frac{4}{5}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=-\frac{2}{5}
Գումարեք -\frac{2}{3} \frac{4}{15}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=-\frac{2}{5},y=-\frac{4}{5}
Այժմ համակարգը լուծվել է:
3x+y=-2
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
-7x+y=2
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3x+y=-2,-7x+y=2
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&1\\-7&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-7\right)}&-\frac{1}{3-\left(-7\right)}\\-\frac{-7}{3-\left(-7\right)}&\frac{3}{3-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{10}\\\frac{7}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-2\right)-\frac{1}{10}\times 2\\\frac{7}{10}\left(-2\right)+\frac{3}{10}\times 2\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\-\frac{4}{5}\end{matrix}\right)
Կատարել թվաբանություն:
x=-\frac{2}{5},y=-\frac{4}{5}
Արտահանեք մատրիցայի x և y տարրերը:
3x+y=-2
Դիտարկել առաջին հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
-7x+y=2
Դիտարկել երկրորդ հավասարումը: Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
3x+y=-2,-7x+y=2
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x+7x+y-y=-2-2
Հանեք -7x+y=2 3x+y=-2-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
3x+7x=-2-2
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
10x=-2-2
Գումարեք 3x 7x-ին:
10x=-4
Գումարեք -2 -2-ին:
x=-\frac{2}{5}
Բաժանեք երկու կողմերը 10-ի:
-7\left(-\frac{2}{5}\right)+y=2
Փոխարինեք -\frac{2}{5}-ը x-ով -7x+y=2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
\frac{14}{5}+y=2
Բազմապատկեք -7 անգամ -\frac{2}{5}:
y=-\frac{4}{5}
Հանեք \frac{14}{5} հավասարման երկու կողմից:
x=-\frac{2}{5},y=-\frac{4}{5}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}