Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int 270\sqrt{x}\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
270\int \sqrt{x}\mathrm{d}x
Դուրս բերեք հաստատունը՝ օգտագործելով \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ը։
180x^{\frac{3}{2}}
Նորից գրեք \sqrt{x}-ը x^{\frac{1}{2}}-ի տեսքով: Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{\frac{1}{2}}\mathrm{d}x-ը \frac{x^{\frac{3}{2}}}{\frac{3}{2}}-ով: Պարզեցնել: Բազմապատկեք 270 անգամ \frac{2x^{\frac{3}{2}}}{3}:
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
1260
Պարզեցնել: