Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած x-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int 27x^{3}+54x^{2}+36x+8\mathrm{d}x
Նյուտոնի երկանդամի \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} միջոցով ընդարձակեք \left(3x+2\right)^{3}:
\int 27x^{3}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 36x\mathrm{d}x+\int 8\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
27\int x^{3}\mathrm{d}x+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{27x^{4}}{4}+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{3}\mathrm{d}x-ը \frac{x^{4}}{4}-ով: Բազմապատկեք 27 անգամ \frac{x^{4}}{4}:
\frac{27x^{4}}{4}+18x^{3}+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով: Բազմապատկեք 54 անգամ \frac{x^{3}}{3}:
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+\int 8\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք 36 անգամ \frac{x^{2}}{2}:
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x
Գտեք 8-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x+С
Եթե F\left(x\right)-ը f\left(x\right)-ի հակաածանցյալն է, ապաf\left(x\right)-ի բոլոր հակաածանցյալների հավաքածուն տրված է F\left(x\right)+C-ի կողմից։ Հետևաբար, ավելացրեք C\in \mathrm{R} ինտեգրացիայի հաստատունն արդյունքին։