Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած x-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int x\left(x^{2}+2x+1\right)\mathrm{d}x
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(x+1\right)^{2}:
\int x^{3}+2x^{2}+x\mathrm{d}x
Օգտագործեք բաժանիչ հատկությունը՝ x x^{2}+2x+1-ով բազմապատկելու համար:
\int x^{3}\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{x^{4}}{4}+2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{3}\mathrm{d}x-ը \frac{x^{4}}{4}-ով:
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+\int x\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով: Բազմապատկեք 2 անգամ \frac{x^{3}}{3}:
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով:
\frac{x^{2}}{2}+\frac{2x^{3}}{3}+\frac{x^{4}}{4}
Պարզեցնել:
\frac{x^{2}}{2}+\frac{2x^{3}}{3}+\frac{x^{4}}{4}+С
Եթե F\left(x\right)-ը f\left(x\right)-ի հակաածանցյալն է, ապաf\left(x\right)-ի բոլոր հակաածանցյալների հավաքածուն տրված է F\left(x\right)+C-ի կողմից։ Հետևաբար, ավելացրեք C\in \mathrm{R} ինտեգրացիայի հաստատունն արդյունքին։