Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int x+\sqrt[3]{x}+\frac{1}{x^{2}}\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով:
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Նորից գրեք \sqrt[3]{x}-ը x^{\frac{1}{3}}-ի տեսքով: Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{\frac{1}{3}}\mathrm{d}x-ը \frac{x^{\frac{4}{3}}}{\frac{4}{3}}-ով: Պարզեցնել:
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int \frac{1}{x^{2}}\mathrm{d}x-ը -\frac{1}{x}-ով:
\frac{2^{2}}{2}+\frac{3}{4}\times 2^{\frac{4}{3}}-2^{-1}-\left(\frac{1^{2}}{2}+\frac{3}{4}\times 1^{\frac{4}{3}}-1^{-1}\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{5}{4}+\frac{3\sqrt[3]{2}}{2}
Պարզեցնել: