Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int _{0}^{1}x^{2}+3x^{5}\mathrm{d}x
Օգտագործեք բաժանիչ հատկությունը՝ x^{2} 1+3x^{3}-ով բազմապատկելու համար:
\int x^{2}+3x^{5}\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int x^{2}\mathrm{d}x+\int 3x^{5}\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\int x^{2}\mathrm{d}x+3\int x^{5}\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{x^{3}}{3}+3\int x^{5}\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով:
\frac{x^{3}}{3}+\frac{x^{6}}{2}
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{5}\mathrm{d}x-ը \frac{x^{6}}{6}-ով: Բազմապատկեք 3 անգամ \frac{x^{6}}{6}:
\frac{1^{3}}{3}+\frac{1^{6}}{2}-\left(\frac{0^{3}}{3}+\frac{0^{6}}{2}\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{5}{6}
Պարզեցնել: