Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int _{0}^{1}x^{2}-2x+1\mathrm{d}x
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(x-1\right)^{2}:
\int x^{2}-2x+1\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով:
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք -2 անգամ \frac{x^{2}}{2}:
\frac{x^{3}}{3}-x^{2}+x
Գտեք 1-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{1^{3}}{3}-1^{2}+1-\left(\frac{0^{3}}{3}-0^{2}+0\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{1}{3}
Պարզեցնել: