Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int _{0}^{1}4x^{2}+12x+9\mathrm{d}x
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(2x+3\right)^{2}:
\int 4x^{2}+12x+9\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int 4x^{2}\mathrm{d}x+\int 12x\mathrm{d}x+\int 9\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
4\int x^{2}\mathrm{d}x+12\int x\mathrm{d}x+\int 9\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{4x^{3}}{3}+12\int x\mathrm{d}x+\int 9\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով: Բազմապատկեք 4 անգամ \frac{x^{3}}{3}:
\frac{4x^{3}}{3}+6x^{2}+\int 9\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք 12 անգամ \frac{x^{2}}{2}:
\frac{4x^{3}}{3}+6x^{2}+9x
Գտեք 9-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{4}{3}\times 1^{3}+6\times 1^{2}+9\times 1-\left(\frac{4}{3}\times 0^{3}+6\times 0^{2}+9\times 0\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{49}{3}
Պարզեցնել: