Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int 4x^{2}-2x+1\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int 4x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
4\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{4x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով: Բազմապատկեք 4 անգամ \frac{x^{3}}{3}:
\frac{4x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք -2 անգամ \frac{x^{2}}{2}:
\frac{4x^{3}}{3}-x^{2}+x
Գտեք 1-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{4}{3}\times 5^{3}-5^{2}+5-\left(\frac{4}{3}\left(-2\right)^{3}-\left(-2\right)^{2}-2\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{490}{3}
Պարզեցնել: