Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int _{-1}^{1}2x^{5}\mathrm{d}x
Նույն հիմքով աստիճանները բազմապատկելու համար գումարեք դրանց աստիճանացույցերը: Գումարեք 2-ը և 3-ը և ստացեք 5-ը:
\int 2x^{5}\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
2\int x^{5}\mathrm{d}x
Դուրս բերեք հաստատունը՝ օգտագործելով \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ը։
\frac{x^{6}}{3}
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{5}\mathrm{d}x-ը \frac{x^{6}}{6}-ով: Բազմապատկեք 2 անգամ \frac{x^{6}}{6}:
\frac{1^{6}}{3}-\frac{\left(-1\right)^{6}}{3}
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
0
Պարզեցնել: