Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած x-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int 20x\left(8x^{3}+36x^{2}+54x+27\right)\mathrm{d}x
Նյուտոնի երկանդամի \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} միջոցով ընդարձակեք \left(2x+3\right)^{3}:
\int 160x^{4}+720x^{3}+1080x^{2}+540x\mathrm{d}x
Օգտագործեք բաժանիչ հատկությունը՝ 20x 8x^{3}+36x^{2}+54x+27-ով բազմապատկելու համար:
\int 160x^{4}\mathrm{d}x+\int 720x^{3}\mathrm{d}x+\int 1080x^{2}\mathrm{d}x+\int 540x\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
160\int x^{4}\mathrm{d}x+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
32x^{5}+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{4}\mathrm{d}x-ը \frac{x^{5}}{5}-ով: Բազմապատկեք 160 անգամ \frac{x^{5}}{5}:
32x^{5}+180x^{4}+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{3}\mathrm{d}x-ը \frac{x^{4}}{4}-ով: Բազմապատկեք 720 անգամ \frac{x^{4}}{4}:
32x^{5}+180x^{4}+360x^{3}+540\int x\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով: Բազմապատկեք 1080 անգամ \frac{x^{3}}{3}:
32x^{5}+180x^{4}+360x^{3}+270x^{2}
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք 540 անգամ \frac{x^{2}}{2}:
270x^{2}+360x^{3}+180x^{4}+32x^{5}+С
Եթե F\left(x\right)-ը f\left(x\right)-ի հակաածանցյալն է, ապաf\left(x\right)-ի բոլոր հակաածանցյալների հավաքածուն տրված է F\left(x\right)+C-ի կողմից։ Հետևաբար, ավելացրեք C\in \mathrm{R} ինտեգրացիայի հաստատունն արդյունքին։