Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած x-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Օգտագործեք բաժանիչ հատկությունը՝ 4x^{7}+4x+4-ը 28x^{6}+4-ով բազմապատկելու և նման պայմանները համակցելու համար:
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{13}\mathrm{d}x-ը \frac{x^{14}}{14}-ով: Բազմապատկեք 112 անգամ \frac{x^{14}}{14}:
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{7}\mathrm{d}x-ը \frac{x^{8}}{8}-ով: Բազմապատկեք 128 անգամ \frac{x^{8}}{8}:
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք 16 անգամ \frac{x^{2}}{2}:
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{6}\mathrm{d}x-ը \frac{x^{7}}{7}-ով: Բազմապատկեք 112 անգամ \frac{x^{7}}{7}:
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
Գտեք 16-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Եթե F\left(x\right)-ը f\left(x\right)-ի հակաածանցյալն է, ապաf\left(x\right)-ի բոլոր հակաածանցյալների հավաքածուն տրված է F\left(x\right)+C-ի կողմից։ Հետևաբար, ավելացրեք C\in \mathrm{R} ինտեգրացիայի հաստատունն արդյունքին։