Լուծել x-ի համար
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x+9=0
x փոփոխականը չի կարող հավասար լինել -3,\frac{5}{2} արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը \left(2x-5\right)\left(x+3\right)-ով:
2x=-9
Հանեք 9 երկու կողմերից: Զրոյից հանելով ցանկացած թիվ ստացվում է նույն թվի բացասական արժեքը:
x=\frac{-9}{2}
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{9}{2}
\frac{-9}{2} կոտորակը կարող է կրկին գրվել որպես -\frac{9}{2}՝ արտահանելով բացասական նշանը:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}