Լուծել x-ի համար
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
\frac{13}{9}x^{2}+1-x^{2}\leq \frac{4}{3}x
Հանեք x^{2} երկու կողմերից:
\frac{4}{9}x^{2}+1\leq \frac{4}{3}x
Համակցեք \frac{13}{9}x^{2} և -x^{2} և ստացեք \frac{4}{9}x^{2}:
\frac{4}{9}x^{2}+1-\frac{4}{3}x\leq 0
Հանեք \frac{4}{3}x երկու կողմերից:
\frac{4}{9}x^{2}+1-\frac{4}{3}x=0
Անհավասարումը լուծելու համար բազմապատկիչների վերածեք ձախ կողմը: Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times 1}}{\frac{4}{9}\times 2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք \frac{4}{9}-ը a-ով, -\frac{4}{3}-ը b-ով և 1-ը c-ով:
x=\frac{\frac{4}{3}±0}{\frac{8}{9}}
Կատարեք հաշվարկումներ:
x=\frac{3}{2}
Լուծումները նույնն են:
\frac{4}{9}\left(x-\frac{3}{2}\right)^{2}\leq 0
Նորից գրեք անհավասարումը՝ օգտագործելով ստացված լուծումները:
x=\frac{3}{2}
Անհավասարումը ճիշտ է x=\frac{3}{2}-ի համար:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}