Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար (complex solution)
Tick mark Image
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

xx^{2}=10\times 100
x փոփոխականը չի կարող հավասար լինել 0-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք 10x-ով՝ 10,x-ի ընդհանուր ամենափոքր բազմապատիկով:
x^{3}=10\times 100
Նույն հիմքով աստիճանները բազմապատկելու համար գումարեք դրանց աստիճանացույցերը: Գումարեք 1-ը և 2-ը և ստացեք 3-ը:
x^{3}=1000
Բազմապատկեք 10 և 100-ով և ստացեք 1000:
x^{3}-1000=0
Հանեք 1000 երկու կողմերից:
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -1000 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=10
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+10x+100=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}-1000 x-10-ի և ստացեք x^{2}+10x+100: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 10-ը b-ով և 100-ը c-ով:
x=\frac{-10±\sqrt{-300}}{2}
Կատարեք հաշվարկումներ:
x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
Լուծեք x^{2}+10x+100=0 հավասարումը, երբ ±-ը գումարած է և երբ ±-ը հանած է:
x=10 x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
Թվարկեք բոլոր գտնված լուծումները:
xx^{2}=10\times 100
x փոփոխականը չի կարող հավասար լինել 0-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք 10x-ով՝ 10,x-ի ընդհանուր ամենափոքր բազմապատիկով:
x^{3}=10\times 100
Նույն հիմքով աստիճանները բազմապատկելու համար գումարեք դրանց աստիճանացույցերը: Գումարեք 1-ը և 2-ը և ստացեք 3-ը:
x^{3}=1000
Բազմապատկեք 10 և 100-ով և ստացեք 1000:
x^{3}-1000=0
Հանեք 1000 երկու կողմերից:
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -1000 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=10
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+10x+100=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}-1000 x-10-ի և ստացեք x^{2}+10x+100: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 10-ը b-ով և 100-ը c-ով:
x=\frac{-10±\sqrt{-300}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=10
Թվարկեք բոլոր գտնված լուծումները: