Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x փոփոխականը չի կարող հավասար լինել -1,0 արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք 6x\left(x+1\right)-ով՝ x+1,x,6-ի ընդհանուր ամենափոքր բազմապատիկով:
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Բազմապատկեք x և x-ով և ստացեք x^{2}:
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
Օգտագործեք բաժանիչ հատկությունը՝ 6x+6-ը x+1-ով բազմապատկելու և նման պայմանները համակցելու համար:
12x^{2}+12x+6=13x\left(x+1\right)
Համակցեք 6x^{2} և 6x^{2} և ստացեք 12x^{2}:
12x^{2}+12x+6=13x^{2}+13x
Օգտագործեք բաժանիչ հատկությունը՝ 13x x+1-ով բազմապատկելու համար:
12x^{2}+12x+6-13x^{2}=13x
Հանեք 13x^{2} երկու կողմերից:
-x^{2}+12x+6=13x
Համակցեք 12x^{2} և -13x^{2} և ստացեք -x^{2}:
-x^{2}+12x+6-13x=0
Հանեք 13x երկու կողմերից:
-x^{2}-x+6=0
Համակցեք 12x և -13x և ստացեք -x:
a+b=-1 ab=-6=-6
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ -x^{2}+ax+bx+6։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-6 2,-3
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -6 է։
1-6=-5 2-3=-1
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=2 b=-3
Լուծումը այն զույգն է, որը տալիս է -1 գումար։
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Նորից գրեք -x^{2}-x+6-ը \left(-x^{2}+2x\right)+\left(-3x+6\right)-ի տեսքով:
x\left(-x+2\right)+3\left(-x+2\right)
Դուրս բերել x-ը առաջին իսկ 3-ը՝ երկրորդ խմբում։
\left(-x+2\right)\left(x+3\right)
Ֆակտորացրեք -x+2 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=2 x=-3
Հավասարման լուծումները գտնելու համար լուծեք -x+2=0-ն և x+3=0-ն։
6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x փոփոխականը չի կարող հավասար լինել -1,0 արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք 6x\left(x+1\right)-ով՝ x+1,x,6-ի ընդհանուր ամենափոքր բազմապատիկով:
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Բազմապատկեք x և x-ով և ստացեք x^{2}:
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
Օգտագործեք բաժանիչ հատկությունը՝ 6x+6-ը x+1-ով բազմապատկելու և նման պայմանները համակցելու համար:
12x^{2}+12x+6=13x\left(x+1\right)
Համակցեք 6x^{2} և 6x^{2} և ստացեք 12x^{2}:
12x^{2}+12x+6=13x^{2}+13x
Օգտագործեք բաժանիչ հատկությունը՝ 13x x+1-ով բազմապատկելու համար:
12x^{2}+12x+6-13x^{2}=13x
Հանեք 13x^{2} երկու կողմերից:
-x^{2}+12x+6=13x
Համակցեք 12x^{2} և -13x^{2} և ստացեք -x^{2}:
-x^{2}+12x+6-13x=0
Հանեք 13x երկու կողմերից:
-x^{2}-x+6=0
Համակցեք 12x և -13x և ստացեք -x:
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք -1-ը a-ով, -1-ը b-ով և 6-ը c-ով:
x=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
Բազմապատկեք -4 անգամ -1:
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
Բազմապատկեք 4 անգամ 6:
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
Գումարեք 1 24-ին:
x=\frac{-\left(-1\right)±5}{2\left(-1\right)}
Հանեք 25-ի քառակուսի արմատը:
x=\frac{1±5}{2\left(-1\right)}
-1 թվի հակադրությունը 1 է:
x=\frac{1±5}{-2}
Բազմապատկեք 2 անգամ -1:
x=\frac{6}{-2}
Այժմ լուծել x=\frac{1±5}{-2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 1 5-ին:
x=-3
Բաժանեք 6-ը -2-ի վրա:
x=-\frac{4}{-2}
Այժմ լուծել x=\frac{1±5}{-2} հավասարումը, երբ ±-ը մինուս է: Հանեք 5 1-ից:
x=2
Բաժանեք -4-ը -2-ի վրա:
x=-3 x=2
Հավասարումն այժմ լուծված է:
6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x փոփոխականը չի կարող հավասար լինել -1,0 արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք 6x\left(x+1\right)-ով՝ x+1,x,6-ի ընդհանուր ամենափոքր բազմապատիկով:
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Բազմապատկեք x և x-ով և ստացեք x^{2}:
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
Օգտագործեք բաժանիչ հատկությունը՝ 6x+6-ը x+1-ով բազմապատկելու և նման պայմանները համակցելու համար:
12x^{2}+12x+6=13x\left(x+1\right)
Համակցեք 6x^{2} և 6x^{2} և ստացեք 12x^{2}:
12x^{2}+12x+6=13x^{2}+13x
Օգտագործեք բաժանիչ հատկությունը՝ 13x x+1-ով բազմապատկելու համար:
12x^{2}+12x+6-13x^{2}=13x
Հանեք 13x^{2} երկու կողմերից:
-x^{2}+12x+6=13x
Համակցեք 12x^{2} և -13x^{2} և ստացեք -x^{2}:
-x^{2}+12x+6-13x=0
Հանեք 13x երկու կողմերից:
-x^{2}-x+6=0
Համակցեք 12x և -13x և ստացեք -x:
-x^{2}-x=-6
Հանեք 6 երկու կողմերից: Զրոյից հանելով ցանկացած թիվ ստացվում է նույն թվի բացասական արժեքը:
\frac{-x^{2}-x}{-1}=-\frac{6}{-1}
Բաժանեք երկու կողմերը -1-ի:
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{6}{-1}
Բաժանելով -1-ի՝ հետարկվում է -1-ով բազմապատկումը:
x^{2}+x=-\frac{6}{-1}
Բաժանեք -1-ը -1-ի վրա:
x^{2}+x=6
Բաժանեք -6-ը -1-ի վրա:
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Բաժանեք 1-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{1}{2}-ը: Ապա գումարեք \frac{1}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Բարձրացրեք քառակուսի \frac{1}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Գումարեք 6 \frac{1}{4}-ին:
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Գործոն x^{2}+x+\frac{1}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Պարզեցնել:
x=2 x=-3
Հանեք \frac{1}{2} հավասարման երկու կողմից: