Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+16=\left(x-4\right)x+\left(x-4\right)\times 5
x փոփոխականը չի կարող հավասար լինել 4-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը x-4-ով:
x+16=x^{2}-4x+\left(x-4\right)\times 5
Օգտագործեք բաժանիչ հատկությունը՝ x-4 x-ով բազմապատկելու համար:
x+16=x^{2}-4x+5x-20
Օգտագործեք բաժանիչ հատկությունը՝ x-4 5-ով բազմապատկելու համար:
x+16=x^{2}+x-20
Համակցեք -4x և 5x և ստացեք x:
x+16-x^{2}=x-20
Հանեք x^{2} երկու կողմերից:
x+16-x^{2}-x=-20
Հանեք x երկու կողմերից:
16-x^{2}=-20
Համակցեք x և -x և ստացեք 0:
-x^{2}=-20-16
Հանեք 16 երկու կողմերից:
-x^{2}=-36
Հանեք 16 -20-ից և ստացեք -36:
x^{2}=\frac{-36}{-1}
Բաժանեք երկու կողմերը -1-ի:
x^{2}=36
\frac{-36}{-1} կոտորակը կարող է պարզեցվել 36-ի՝ հեռացնելով բացասական նշանը թե´ համարիչից և թե´ հայտարարից:
x=6 x=-6
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+16=\left(x-4\right)x+\left(x-4\right)\times 5
x փոփոխականը չի կարող հավասար լինել 4-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը x-4-ով:
x+16=x^{2}-4x+\left(x-4\right)\times 5
Օգտագործեք բաժանիչ հատկությունը՝ x-4 x-ով բազմապատկելու համար:
x+16=x^{2}-4x+5x-20
Օգտագործեք բաժանիչ հատկությունը՝ x-4 5-ով բազմապատկելու համար:
x+16=x^{2}+x-20
Համակցեք -4x և 5x և ստացեք x:
x+16-x^{2}=x-20
Հանեք x^{2} երկու կողմերից:
x+16-x^{2}-x=-20
Հանեք x երկու կողմերից:
16-x^{2}=-20
Համակցեք x և -x և ստացեք 0:
16-x^{2}+20=0
Հավելել 20-ը երկու կողմերում:
36-x^{2}=0
Գումարեք 16 և 20 և ստացեք 36:
-x^{2}+36=0
Սրա նման քառակուսի հավասարումները, որոնց անդամը x^{2} է, ոչ թե x, նույնպես կարող են լուծվել քառակուսու բանաձևի միջոցով, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, հենց որ բերվեն ստանդարտ ձևի՝ ax^{2}+bx+c=0:
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք -1-ը a-ով, 0-ը b-ով և 36-ը c-ով:
x=\frac{0±\sqrt{-4\left(-1\right)\times 36}}{2\left(-1\right)}
0-ի քառակուսի:
x=\frac{0±\sqrt{4\times 36}}{2\left(-1\right)}
Բազմապատկեք -4 անգամ -1:
x=\frac{0±\sqrt{144}}{2\left(-1\right)}
Բազմապատկեք 4 անգամ 36:
x=\frac{0±12}{2\left(-1\right)}
Հանեք 144-ի քառակուսի արմատը:
x=\frac{0±12}{-2}
Բազմապատկեք 2 անգամ -1:
x=-6
Այժմ լուծել x=\frac{0±12}{-2} հավասարումը, երբ ±-ը պլյուս է: Բաժանեք 12-ը -2-ի վրա:
x=6
Այժմ լուծել x=\frac{0±12}{-2} հավասարումը, երբ ±-ը մինուս է: Բաժանեք -12-ը -2-ի վրա:
x=-6 x=6
Հավասարումն այժմ լուծված է: